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Ñ
x

-3
-2

-1
0

1

2

3

'̃ x

-3

-2

-1

0

1
2
3

P
('̃

x , Ñ
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Neel-VBS transition

Landau-Ginsburg theory fails to capture quantum #s of 
topological defects.

Captured with fractionalised representation of Neel order 
parameter:

Levin & Senthil ’04Senthil, Vishwanath, Balents, Sachdev, Fisher ’04

Vortex in VBS order 
parameter     :~'

z = (z1, z2), z � ei�zU(1) gauge symmetry:~N = z†~�z
z ⇠ VBS vortex



NCCP1 model

VBS order parameter: 
inserts monopoles in gauge field

Operators

Internal symmetries

Neel order parameter

L = |(@ � ia)z|2 +m2|z|2 + �(|z|2)2 + . . .

~N = z†~�z

'
x

+ i'
y

= M
a

Spin symmetry:
SO(3) rotations of

Flux conservation (emergent):
U(1) rotations of ~'~N

 ~ VBS vortex z↵

Could there be an emergent symmetry relating      and     ?~N ~'



Neel-VBS superspin

WZW term to attach spin-1/2 to VBS vortex:
More formally, to ensure correct anomalies for SO(3)xO(2)

Tanaka & Hu ‘05
Senthil & Fisher ’06

Motivation to speculate about SO(5)

�� = (Nx, Ny, Nz, �x, �y)~n

S =

Z ✓
1

g
(r~n)2 + strong anisotropies

◆
+ SWZW

reduce symmetry to 
SO(3)xO(2) or SO(3)xlattice

Field theory directly in terms of     ,     ?~N ~'

● Numerically: SO(5) emerges to excellent precision at Jc



[1D reminder: spin-1/2 chain]

� = 1 � = �1

This SO(4) rotates the  ‘superspin’ ~n = (', N
x

, N
y

, N
z

)

Flows to a conformal field theory with the emergent symmetry

(1+1D conformal invariance 
⟹ conserved currents doubled)

SU(2)⇥ SU(2)

Z2
= SO(4)

S =
1

g

Z
dxdt (r~n)2 +

2⇡i ✏
abcd

Area(S3)

Z
dudxdt n
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WZW term attaches spin-1/2 to VBS domain wall

H = J
X

i

~Si.~Si+1



Duality web

● Surface of 3+1D topological paramagnet (SPT) with SO(5)

None of these theories has explicit SO(5). 

Wang, AN, Metlitski, Xu, Senthil ’17 

NCCP1 dual NCCP1

QED—
Gross-Neveu

dual QED—
Gross-Neveu

SO(5)

SO(5) can be understood in terms of a web of dualities

DCP also related to two theories with explicit SO(5):

● QCD with Nf=2, Nc=2



True critical point?
At first glance, numerics (up to L=640) show continuous 
transition. However, strong violations of finite-size scaling

�

d

d�⌧⇤

⌧

girrelevant

RG analysis: even in this scenario 
there is ‘quasiuniversality’:

One scenario is that transition is ultimately first order, with 
ξ >> 640. If so, SO(5) & dualities are approximate, not exact.

AN, Chalker, Serna, Ortuno, Somoza ’15 Wang, AN, Metlitski, Xu, Senthil ’17 

Large ξ and SO(5) symmetry are 
robust, not due to fine-tuning. SO(5) 
holds up to accuracy “1/ξconst”

Kuklov et al 08, Sandvik ’11, Banerjee et al ’10, Harada et al ’13…

also, tension with conformal bootstrap bounds for SO(5)
 Simmons-Duffin; Nakayama, Ohtsuki  ’16

AN, Chalker, Serna, Ortuno, Somoza ’15 Shao, Guo, Sandvik ’16 
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● Strategy for simulations

● Numerical results 

● ‘Naive’ RG interpretation



Strategy for simulations
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1+1D example: spin-1/2 chain

Standard 2D loop model
 → universal physics of spin-1/2 chain

Gapless 
spin-1/2 chain

Gapped
VBS states

Long loops mediate 
power law     
correlations

Two packings of short loops →
two VBS configurationsh ~N(0). ~N(r)i



Model for 2+1D Neel-VBS transition

�� = (1, 1) �� = (1, �1) �� = (�1, �1)�� = (�1, 1)

Neel → long loops. VBS → short loops. 4 ‘VBS’ states:



�� = (1, 1) �� = (1, �1) �� = (�1, �1)�� = (�1, 1)

Neel → long loops. VBS → short loops. 4 ‘VBS’ states:

�x

�y

Model for 2+1D Neel-VBS transition



�x

�y

Drive Neel—VBS transition using interaction between    s'

Long-distance properties as in JQ model, but more efficient 
to simulate. Exact spacetime isotropy also removes some 
scaling corrections.

Neel → long loops. VBS → short loops.

Model for 2+1D Neel-VBS transition



SO(5)

Look for emergent          in                planeU(1) ('
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SO(3)U(1)

U(1)?



Scaling of Neel and VBS fluctuations

L

0.088 0.0882 0.0884 0.0886 0.0888

0

2

4

6

8

10 L

32
40
52

64
80
100

120
160
200

256
320
400

512

J

�
'
/�

N

100 200 300 400 500

10�1

1

101

L

�
'
/�

N

Neel phase

L

VBS phase

Fluctuations scale identically at Jc

Contrast with

s
h'2

x

i
hN2

x

i

p
h'2

x

i/
p
hN2

x

i ⇠ LxN�x'

(up to L=512)



Scaling of Neel and VBS fluctuations

Fluctuations scale identically at Jc

Contrast with

L

0.088 0.0882 0.0884 0.0886 0.0888

0

2

4

6

8

10 L

32
40
52

64
80
100

120
160
200

256
320
400

512

J

�
'
/�

N

100 200 300 400 500

10�1

1

101

L

�
'
/�

N

L

s
h'2

x

i
hN2

x

i

p
h'2

x

i/
p
hN2

x

i ⇠ LxN�x'

(up to L=512)

J = Jc



Joint Neel/VBS probability distribution

(Variances normalized to one)
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Scaling of Neel and VBS fluctuations
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Operators

Classify operators into SO(5) multiplets
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ab = nanb �

1

5
�abn

2 X(4)
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We have also tested for symmetry relations between
two-point correlation functions of n and of X(2)



Operators

We have also tested for symmetry relations between
two-point correlation functions of n and of X(2)

Classify operators into SO(5) multiplets
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Operators
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⌘Néel = 0.259(6)

⌘VBS = 0.25(3)

Symmetry between components of vector



Operators
Symmetry between cpts of symmetric tensor: X(2)
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Emergence of SO(5) ~n = ('
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X(2)
ab = nanb �

1

5
�abn

2

X(4)
abcd = nanbncnd � (. . .)

For exact SO(5) to emerge, need sufficiently stable fixed point.

Contrast Wilson-Fisher CFTs where 
singlet mass strongly relevant

L = LSO(5) � �J
X

a=1,2

X(2)
aa + �

X

a,b=1,2

X(4)
aabb + 

X

a=1,2

X(4)
aaaa + . . .

Higher Neel-VBS 
anisotropy

“Z4” VBS 
anisotropy

Tuning 
parameter

⇠ ~'2 � 2

3
~N2

irrelevant
⇠ '4
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+ '4
y

+ . . .⇠ (~'2)2 + . . .

RG relevant

SO(5) singlets

)
Must be RG irrelevant
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Two duality webs

NCCP1 dual NCCP1

QED—
Gross-Neveu

dual QED—
Gross-Neveu

SO(5)-invariant theory 

More 
speculatively:

easy-plane NCCP1 dual easy-plane NCCP1

QED dual QED

O(4)-invariant theory?

but see recent simulations:
Qin, He, You, Lu, Sen, Sandvik, Xu, & Meng ’17
Zhang, He, Eggert, Moessner, & Pollmann ’17



Particle-vortex duality for complex scalar field 

Gauge invariant U(1) order parameter:

Ldual = |(@ � ia)w|2 �m2|w|2 + �0|w|4 + . . .

L and Ldual describe same system with different bare couplings. 
May have same IR behaviour and in fact they do.

Recently, extension of particle-vortex duality idea to 
Dirac fermion Wang & Senthil ’15; Metlitski & Vishwanath ’16; 

Seiberg et al ’16; Karch & Tong ’16; Son ’15;

L = |@�|2 +m2|�|2 + �|�|4

Ma ! inserts monopole in a�



[Aside: strong and weak duality]

Weak statement (derived):
Theories A and B have the same operator content and 
anomalies.

Strong statement (conjectured):
Theories A and B become the same under RG

For DCPs, it is the strong dualities that imply large emergent 
symmetries.

A
B

for two field theories A and B which share the
‘microscopic’ symmetry                        :   G = GA \GB



NCCP1 dual NCCP1

QED—
Gross-Neveu

dual QED—
Gross-Neveu

SO(5)-invariant theory 

Dualities



Self-duality of NCCP1

L = |(@ � ia)z|2 +m2|z|2 + �(|z|2)2 + . . .

Ldual = |(@ � iã)w|2 �m2|w|2 + �(|w|2)2 + . . .+(w†�zw)2 + . . .

'
x

+ i'
y

Ma

N
x

+ iN
y

2z⇤1z2

Nz

|z1|2 � |z2|2

2w⇤
2w1 M⇤

ã |w1|2 � |w2|2

in L

in Ldual

We have SU(2) for z. But a priori, do not have SU(2) for w.

Apply particle-vortex duality to both species of spinon z1 �! w2

z2 �! w⇤
1



Conjecture: at the critical point of    , 
duality becomes a self—duality

L

Ldual = |(@ � iã)w|2 + �(|w|2)2L = |(@ � ia)z|2 + �(|z|2)2

Dual field w has emergent SU(2) symmetry. This rotates 
Neel into VBS

Self-duality of NCCP1

'
x

+ i'
y

Ma

N
x

+ iN
y

2z⇤1z2

Nz

|z1|2 � |z2|2

2w⇤
2w1 M⇤

ã |w1|2 � |w2|2

in L

in Ldual

This implies SO(5) (and vice versa).



NCCP1 dual NCCP1

QED—
Gross-Neveu

dual QED—
Gross-Neveu

SO(5)-invariant theory 

Boson-fermion dualities

easy-plane NCCP1 dual easy-plane NCCP1

QED dual QED

O(4)-invariant theory?



QED

12

B. Fermionic Nf = 2 QED3 and related models

We now turn our attention to fermionic massless QED3 models with Nf = 2 flavors of two-

component fermions:6

Lqed =
2X

j=1

i ̄j /Da j + · · · (8)

where /Da = �µDa,µ is the gauge covariant Dirac operator that involves a dynamical noncompact

U(1) gauge field aµ (we choose �0,1,2 = {�y, i�z, i�x} and  ̄ =  †�0). The flavor symmetry of the

model will play an important role in our discussion. We will often, but not always, restrict attention

to the case with symmetry under SU(2) rotations between the two flavors. In addition there is a

global U(1) symmetry associated with the conservation of the flux of the gauge field a. The theory

then has manifest global SU(2)⇥U(1)
Z2

symmetry.7 It will sometimes however be convenient to consider

a more general class of QED3 theories where the two fermion species are not related by SU(2)

rotations. The theory then only has a global U(1)⇥ U(1) symmetry.

By applying the fermion-fermion duality of a single species of Dirac fermion to each of the two

fermion species, Refs. [31, 33, 35] demonstrated that, similar to the bosonic easy-plane CP 1 model,

this theory is self-dual, i.e. it is dual to another Nf = 2 QED

Lqed�dual =
2X

j=1

i�̄j /Dã�j + · · · . (9)

6 Here we use a more “traditional” procedure of defining a Dirac fermion action. Namely a single Dirac fermion

should come together with a Chern-Simons term at level k = ±1/2 to avoid a gauge anomaly. A more precise

way to define this theory is to use the procedure in Ref. [32, 54] where the partition function of a massless Dirac

fermion is written as Z = |Z |e�i⇡⌘[A,g]/2, where A is the gauge field, either dynamical or background, and g is

the space-time metric. ⌘ is defined in terms of eigenvalues of the Dirac operator [54], see Eq. (116). This form

corresponds to UV-completing the massless Dirac theory by adding two extra ‘heavy’ Dirac fermions with the

same sign of Dirac mass. This enables retaining flavor SU(2) rotations as an exact symmetry. If we do not care

about this SU(2) symmetry then we can choose the two heavy fermions to have opposite masses in which case

the partition function is real. Further strictly speaking A should be regarded as a spinc connection and not an

ordinary U(1) gauge field, which means that fields with odd charge are fermions [37]. The more precise form of

the Lagrangian will be presented in detail in Appendix A.
7 Note that the fermions themselves transform as spinors under the flavor SU(2) but rotations by the element of

the center Z2 can be compensated by a U(1) gauge rotation. This might naively lead to the expectation that

the global symmetry is SO(3) ⇥ U(1). However the theory has monopole operators which are local and which

transform as spinors under the SU(2). Rotations by the center of SU(2) on these can now be compensated by ⇡

rotations under the flux conservation global U(1), and therefore the global symmetry apparent in the Lagrangian

is SU(2)⇥U(1)
Z2

.

Two 2-component Dirac fermions, dynamical U(1) gauge field

SU(2) global flavour symmetry

This is a theory of bosons: all gauge invariant operators are 
bosonic. What are the ‘elementary’ ones?

Naively, S=1 bilinears:  ̄i~�ij j

In fact monopole is an S=1/2 boson: f†
i Ma

Possible duality with easy-plane NCCP1 model
Karch & Tong ‘16 Wang, AN, Metlitski, Xu, Senthil ’17 

Borokhov, Kapustin, Wu ’02 



QED—Gross-Neveu
Two 2-component Dirac fermions, dynamical U(1) gauge field

13

Given that a particular basis in flavour space had to be selected to perform this duality, we are,

strictly speaking, restricting to theories with just a U(1)⇥U(1) symmetry. The dual theory in Eqn.

9 then should also only be taken to have U(1) ⇥ U(1) symmetry. However, we will later discuss

the possibility that with full SU(2) flavor symmetry this duality survives. As in the easy-plane

NCCP 1 model, the roles of the gauge-flux conservation symmetry and the relative phase rotation

symmetry between the two Dirac fermions are exchanged in the dual QED theory. The self-duality

is obtained by applying the fermionic particle-vortex duality [28, 29, 36, 38] to both flavors of

fermions:  1 ! �2,  2 ! �1. Since the Dirac mass term is odd under the particle-vortex duality,

the self-duality sends  ̄1 1 ! ��̄2�2 and  ̄2 2 ! ��̄1�1.

The IR fate of QED3 at Nf = 2 is controversial at this stage. It is not clear whether at low

energy the Dirac fermions will spontaneously break the flavor symmetry and gain a mass of the

form m ̄�z — a long-standing issue known as chiral symmetry breaking. Recent numerics [43],

however, suggests the possibility that this theory may be stable in the IR (although an earlier study

suggests spontaneous chiral symmetry breaking [46]).

We will also be interested in the phases and phase transition of this model when a coupling to

an extra scalar � is allowed. The resulting model has the Lagrangian

Lqed�gn =
2X

j=1

i ̄j /Da j + � ̄ + V (�) (10)

Here we have included a potential V (�) = V (��) for the scalar field � (we have suppressed its

kinetic term for notational simplicity). The theory is time-reversal symmetric if under time reversal

� ! ��. As the potential V (�) is tuned, we expect a phase transition between a time-reversal

symmetric phase where h�i = 0 and a time reversal broken one where h�i 6= 0. We will usually refer

to Eq. (10) when tuned to this transition as the QED3-Gross-Neveu model (QED3–GN for short).

Interestingly, with some assumptions, Ref. [27] showed that the low energy behavior of Nf = 2

QED3 was described by the O(4) sigma model at ✓ = ⇡ discussed in the previous subsection, again

with the proviso that the sigma model needs to extended to strong coupling. This suggests a

connection between the bosonic NCCP 1 theories and the fermionic QED3 theories. Below we will

sharpen this connection through precise duality statements. This will also enable us to understand

the emergent IR symmetries of these theories at their critical point.

Ising scalar tuned to critical point

Elementary ‘order parameters’

f†
1Ma f†

2Ma �

5 real components…



Conjecture: duality to NCCP1, emergent SO(5)

f†
1Ma

f†
2Ma

'
x

� i'
y

N
x

+ iN
y

� Nz

(

(

NCCP1 
symmetries

QED—GN 
symmetries

SU(2)
flavour

T

U(1)VBS

SO(3)spin

Under previous assumptions about stability of SO(5) fixed point,
either symmetry can protect emergent SO(5) (at critical point)

Dual representations of 5 order parameters

Wang, AN, Metlitski, Xu, Senthil ’17 



Dual representations of 5 order parameters
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X
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Dual representations of 5 order parameters
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[Aside: duality building blocks]
elementary bosonic duality

|DA�|2 � |�|4  ! |Daw|2 � |w|4 + 1

2⇡
adA

elementary boson-fermion duality

“S” and “T” operations

— make background gauge field dynamical 
— add level 1 Chern Simons term for background gauge field

integrate out gauge field
Z

a
e

i
2⇡

R
adA = �(A)

i ̄DA  ! |Daw|2 � |w|4 + 1

2⇡
adA+

1

4⇡
ada+

1

8⇡
AdA

 ! |Dãw̃|2 � |w̃|4 � 1

2⇡
ãdA� 1

4⇡
ãdã� 1

8⇡
AdA

more handwavingly: deform each side to reach new fixed point



Can we make SO(5) explicit?

— in field theory?

— in lattice model?



Can we make SO(5) explicit?

WZW model?
S =

Z ✓
1

g
(r~n)2 + strong anisotropies

◆
+ SWZW

Not well-defined ctm theory (nonrenormalizable),
not useful for calculations

Possible alternative: QCD with Nf = Nc = 2

SU(2) global SU(2) gauge

This theory has exact SO(5) and the same anomalies as DCP

One way to see: couple to       and integrate out fermions in large mass 
expansion (Abanov-Wiegmannization): gives WZW model

~n

17

4. None of the field theories in the duality web, Eq. (12), posesses the full SO(5) symmetry

explicitly — the symmetry is at best emergent in the IR. Further, just as in the easy-plane

case, the SO(5) symmetry is anomalously realized. We also discuss two (renormalizable) field

theories with explicit SO(5) symmetry in Sec. VI. The first one is QCD3 with Nf = 2:

L =
X

v=1,2

i ̄v�
µ(@µ � iaµ) v, (18)

where a is an SU(2) gauge field, and  1,2 are two SU(2)-fundamental fermions. This theory

can be obtained from the square lattice spin-1/2 model through a standard parton construction

with a ⇡-flux mean field ansatz, and it has an SO(5) symmetry which becomes manifest when

(18) is written in terms of Majorana fermions. The second theory is a Higgs descendent of

QCD3, where the SU(2) gauge symmetry is Higgsed down to U(1):

L =
4X

i=1

i ̄i�
µ(@µ � iaµ) i + (�Ma + h.c.), (19)

where aµ is now a U(1) gauge field, and the term Ma represents (schematically) monopole

tunneling (instanton) events. In both theories the Dirac fermions transform in the spinor

representation of SO(5). The SO(5)-vector operators are simply the mass operators that are

time-reversal invariant.

While the IR fates of the theories (18) and (19) are unknown, both theories have the same

symmetry anomaly as the deconfined critical point. Therefore, one possible scenario, among

others, is that one of these theories will flow to the deconfined critical point in the IR.

5. The full SO(5) symmetry of the deconfined critical point is anomalous, as revealed already by

the sigma model approach. The manifestly SO(5)-invariant QCD theory makes it possible to

analyze the anomaly in more detail. We show in Secs. VIC and VII that QCD3 with Nf = 2,

with the full SO(5)⇥ZT
2 symmetry, can only be realized on the surface of a three-dimensional

bosonic symmetry-protected topological (SPT) state. To characterize this SPT state, we can

introduce a background SO(5) gauge bundle A5 in the 3+ 1D bulk. The topological response

to A5 is given by a discrete theta-angle (in contrast to the more familiar theta-angle in 3+1D

which can be continuously varied). Sec. VIC provides a physical derivation of these results

which are then rederived by more formal methods in Sec. VII.9. We show that the partition

9 A brief review of some math concepts relevant to this Sec. VII is given in Appendix D.

+ . . .



SO(5) anomaly
SO(5) cannot be incorporated in a microscopic 2+1D model, 
due to anomaly.

QCD description implies a 3+1D parton construction for this 
SPT. Is there a nicer picture for its wavefunction?

U(1)VBS monopole

spin-1/2 of SO(3)spin

Must live at surface of SO(5) SPT (‘topological paramagnet’) 
with correct response to SO(5) gauge field (n1, n2, n3, n4, n5)
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Pseudocriticality
Quasi—universality at a weak first order transition,
due to nearby unphysical fixed point.

Illustrate using Q-state Potts model in 2d

RG coupling�

d

d�

Q

Q⇤ = 4

line of Potts 
critical points

line of 
tricritical 
points

Q⇤ = 4

Nienhuis et al ’79 
Cardy, Nauenberg, Scalapino ’80

For              , slow RG flow due to 
inaccessible nearby fixed point.

Q & Q⇤ ⇠ ⇠ exp

✓
⇡2

p
Q�Q⇤

◆



�

d

d�⌧⇤

⌧

girrelevant

Small            : RG flows attracted to quasiuniversal flow line⌧ � ⌧⇤

Same topology of RG flows in many other theories,
with different ‘deformation parameter’     ⌧

● Effective exponents, etc. drift as     flows
● However, these drifts are quasiuniversal when     is large

�
⇠

AN, Chalker, Serna, Ortuno, Somoza ’15 Wang, AN, Metlitski, Xu, Senthil ’17 

Pseudocriticality

g
irrelevant

⇠ ⇠�const

⇠ ⇠ e
ap

⌧�⌧⇤



Application to NCCP1

�

�

�

�

��������

�	

���
�������������������

�	

���
����������������

�
�������
����������
��������������������

RG fixed points for NCCPn-1 
in d dimensions

Conjecture based on large n, 
2+ϵ, 4-ϵ, replica limit.

Slice at constant n=2 (NCCP1):

�

d

d�

girrelevant

Can explain ubiquitous
‘drifts’ at DCP as quasiuniversal 
feature of flow line

Can also be made 
compatible with SO(5)

AN, Chalker, Serna, Ortuno, Somoza ’15 Wang, AN, Metlitski, Xu, Senthil ’17 

NCCP1 in d=3 plausibly in this regime with ⇠ � 640
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SO(5) in a very different model

JQ model and loop model had SO(3) x lattice symmetry. 
Here, only lattice x U(1).

Classical dimers in 3D: columnar ordering transition 
Argued to be described by NCCP1 Powell, Chalker ’08 

Chen, Gukelberger, Trebst, Alet, Balents, ’09 

Z =
X

fully-packed

dimer configs

e�E/T
Vary interaction     on squares
Also, fixed interaction on cubes

t
dimer liquid dimer crystal

Charrier & Alet

t



SO(5) in a very different model

L = LSO(5) + �J
X

a=1,2

X(2)
aa + �

X

a=1,2

X(4)
aabb + 

X

a=3,4,5

X(4)
aaaa + . . .

Microscopic symmetry N
x

, N
y

, N
z

'
x

,'
y

,( )
U(1) latticeo

→ SO(5)?

Columnar order parameter
~N = (N

x

, N
y

, N
z

)
6-fold anisotropy

dimer liquid dimer crystal

operator which inserts 
monomer (NCCP1 monopole)

'
x

+ i'
y

LRO for 

t

Emergence of SO(5) is allowed here:



Classical dimers: numerics

Moment ratios consistent with SO(5) to very good precision

J J

Confirmation that SO(5) is generic
Sreejith, AN, Powell, in preparation

Check emergent U(1) symmetry for (      ,     )N
x

'
x



Outlook

Connection to 3+1D SO(5) topological paramagnet 
Nice model for this?

Emergent SO(5) in Neel—VBS transition and related 
models to very high precision

Conjectured duality webs for SO(3)-symmetric and easy-plane 
deconfined criticality. Further simulations for fermionic theories?

Picture for ‘quasiuniversal’ behaviour due to nearby fixed-point 
annihilation. Applications to other quantum phase transitions?
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Strategy for simulations

Change basis on B sublattice so singlet is 

1p
2
(| iA| iB + | iA| iB)

a

a

b

b a a

b b

+ �t Je��tH '

Graphical representation for partition function:

Two spins with S.S coupling:

im
ag
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ar

y 
tim

e

Heisenberg AFM → stat mech of loops in spacetime

Z(�) = Tr
�
e��tH

��/�t
=

X

coloured

loop configs

(. . .)



Strategy for simulations

Heisenberg AFM → stat mech of loops in spacetime

Change basis on B sublattice so singlet is 

1p
2
(| iA| iB + | iA| iB)

a

a

b

b a a

b b

+ �t Je��tH '

Graphical representation for partition function:

Two spins with S.S coupling:

Z(�) = Tr
�
e��tH

��/�t
=

X

coloured

loop configs

(. . .)
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‘Old’ emergent U(1) symmetry for VBS

(Variances normalized to one)
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Loop configuration given by 
breaking up each node 

Interactions

Z =
�

coloured
loop configs

exp
�
J

�
��

�

Interaction is between n.n. nodes on same sublattice



Mapping to NCCP1 model

Exact mapping of loop model to lattice CP1 model.

PRL 107, 110601 (2011), PRB 88, 134411 (2013), and arXiv: 1506.06798

Explicit Berry phase calculation for hedgehogs:

(Dual point of view:  VBS vortex = spinon worldline)

(transfer matrix ➜ spin-1/2 on square lattice)

only quadrupled hedgehogs in continuum.

Microscopic gauge group is compact, but:

Analogous to Heisenberg magnet.

1, i, -1, -i



Hedgehogs

1, i, -1, -i

⇒  NCCP1

Microscopic hedgehog fugacity proportional to 

Coarse-grained hedgehog fugacity vanishes

(More precisely: only quadrupled hedgehogs in continuum)



Direct, apparently continuous transition
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Scaling collapse fails 
(e.g. order parameters, heat capacity......)

Critical exponents drift
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UVBS
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Violation of unitarity bounds
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Assuming                                     ,
anomalous dimensions for Neel/VBS become negative at large size

G(r, L) = L�(1+�)f(r/L)

� � 0But
for any unitary CFT
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scaling collapse!


