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Neel-VBS transition

Landau-Ginsburg theory fails to capture quantum #s of
topological defects.
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Captured with fractionalised representation of Neel order
parameter:

]\7 — ZTO_')Z Z — (21722)7 Zi ™ €ZXZ
z ~ \/BS vortex

Senthil, Vishwanath, Balents, Sachdev, Fisher '04 Levin & Senthil '04



NCCP! model

L =10 —ia)z|* + m?|z|? + \(|z|?)?

Za ~ VBS vortex
Operators

—

Neel order parameter N =z'cz

VBS order parameter: |
inserts monopoles in gauge field @Y. + 1p, = M,

Internal symmetries

Spin symmetry: Flux conservation (emergent):
SO(3) rotations of NV U(1) rotations of ¢

Could there be an emergent symmetry relating N and 95 ?



Neel-VBS superspin

Field theory directly in terms of N, (32

/r_i — (Nx,Ny,NZ,QOZC,QOy)

WZW term to attach spin-1/2 to VBS vortex: Tanaka & Hu ‘05
More formally, to ensure correct anomalies for SO(3)xO(2) Senthil & Fisher '06

1
S — / <—(Vﬁ)2 + strong anisotropies> + Swzw
g

reduce symmetry to
or

Motivation to speculate about

e Numerically: emerges to excellent precision at Jc



[1D reminder: spin-1/2 chain] H=7Y 8.5

p=1 p=-1

Flows to a conformal field theory with the emergent symmetry

(1+1D conformal invariance

SU(2) x SU(2)

7 — 80(4) — conserved currents doubled)

This SO(4) rotates the ° 1= (p, Ng, Ny, N.)
S = 1/d dt (Vii)* A ST Cabed /dudxdtn Op1pOpncOyn
—g L IAI’G&(SS) aUxTtpUtTicUqylld

WZW term attaches spin-1/2 to VBS domain wall



Duality web

SO(5) can be understood in terms of a web of dualities

NCCP1 dual NCCP1
/
SO(5)
QED— ™\ dual QED—
Gross-Neveu Gross-Neveu

None of these theories has explicit SO(5).
DCP also related to two theories with explicit SO(5):
e QCD with Nf=2, Nc=2

e Surface of 3+1D topological paramagnet (SPT) with SO(5)
Wang, AN, Metlitski, Xu, Senthil ’17



True critical point?

At first glance, numerics (up to L=640) show continuous

transition. However,
Kuklov et al 08, Sandvik 11, Banerjee et al ’'10, Harada et al ’13...

AN, Chalker, Serna, Ortuno, Somoza ’15 Shao, Guo, Sandvik ’'16
also, tension with conformal bootstrap bounds for SO(5)

Simmons-Duffin; Nakayama, Ohtsuki ’16

One scenatrio is that transition is ultimately first order, with
& >> 640. If so, SO(5) & dualities are approximate, not exact.

_
RG analysis: even in this scenario
there is ‘quasiuniversality’: T

Large € and SO(5) symmetry are \
robust, not due to fine-tuning. SO(5) 1 "\
holds up to accuracy “1/&const” /

Jirrelevant

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil ’17
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Plan

Evidence for SO(5) at the Neel-VBS transition

e Strategy for simulations
e Numerical results

e ‘Naive’ RG interpretation



Strategy for simulations

Mapping between Heisenberg AFM
and stat mech of loops in one higher dimension.

loops = worldlines of spinons
<1/ <2
For Heisenberg AFM, N =75z

Z(B) = Tr (e~ °tH)"*!

— partition function for loops in
discrete space, continuous time

Simplify: construct loop model with same universal
properties, but isotropic in spacetime

Imaginary time
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1+1D example: spin-1/2 chain

Standard 2D loop model
— universal physics of spin-1/2 chain

Gapless Gapped
spin-1/2 chain VBS states

IféS D.DD.DD DDDDQ
oL e ese
e =

ool Ooo

Long loops mediate Two packings of short loops —
power law (N (0).N(r)) two VBS configurations
correlations



Model for 2+1D Neel-VBS transition

Neel — long loops. VBS — short loops. 4 'VBS’ states:




Model for 2+1D Neel-VBS transition

Y r—>
Py

Neel — long loops. VBS — short loops. 4 'VBS’ states:




Model for 24+1D Neel-VBS transition

Neel — long loops. VBS — short loops.

Drive Neel—VBS transition using interaction between ¢s

Long-distance properties as in JQ model, but more efficient
to simulate. Exact spacetime isotropy also removes some
scaling corrections.



SO(5)

Look for emergent U(1) in (¢, N, ) plane



Scaling of Neel and VBS fluctuations (up to L=512)

10 | | | ‘L
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J
Fluctuations scale identically at Jc

Contrast with /(2)/+/(N2) ~ L*N =%
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10 | | L
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J
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Joint Neel/VBS probability distribution

-1
0
(cos 26) = 0.00035(17) Lo
2
(cos46) = 0.0002(7) 3 -3

(cos 68) = 0.0002(5) (Variances normalized to one)

- L =100



Scaling of Neel and VBS fluctuations

~

Fy = (N; — &)

As a function of coupling
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Operators

Classify operators into SO(5) multiplets
Vector n = (Y, Yy Nuy Ny, N,)

Symmetric traceless 2-cpt and 4-cpt tensors

1
Xﬁ) — NgNp — g5abn2 Xﬁid = NgNpNeNg — (.. .)

We have also tested for symmetry relations between
two-point correlation functions of n and of X(2)



Operators

Classify operators into SO(5) multiplets

Vector n = ((S%a %)@an Nya NZJ)

Symmetric traceless 2-cpt and 4-cpt tensors

1
XC(L? — NagMNp — g(sabn2

/\ v#® e — (.
(Sp:ch) (SO:USOy) (§¢Q—§N2 ) abed NaMpTcNld (

We have also tested for symmetry relations between
two-point correlation functions of n and of X(2)




Operators

Symmetry between components of vector

| Ineel = 0.259(6)

HVBS::(125(3)

- 24 - 40 -80 - 160 - 320
TR 28 - 52 100 - 200 - 400
TR, 32 64 - 120 - 256 - 512




Operators

- .y (2)
Symmetry between cpts of symmetric tensor: X

A
(0(0)O(r)) for O ={ =¥y
§952 _ 2]\72
5 5
s x~ 1.5
O
©
107 ¢ o
o, .
2P 3]
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Emergence of SO(5) 1= (Pa; Py, Ney Ny, N-)

For exact SO(5) to emerge, need sufficiently stable fixed point.

> 1
Xc(bb) = NgNp — gdaan RG relevant
(4) _ .
X obed = NaMbNeNd — (-) Must be RG irrelevant
Contrast Wilson-Fisher CFTs where
SO(5) singlets singlet mass strongly relevant

L=Lsop — 0T Y XD +X D X, +r> XB, +...

a=1,2 a,b=1,2 a=1,2
Tuning Higher Neel-VBS 24" VBS
parameter anisotropy anisotropy
o 23 - 4 4
N%OQ—gNQ va(gpz)z%—... ~ Oy,

Irrelevant



Plan

Introduction

Evidence for SO(5) at the Neel-VBS transition

Dualities
NCCP1 dual NCCP1
-
SO(5)-invariant theory
QED— ™ qual QED—
Gross-Neveu Gross-Neveu

Possibility of ‘pseudocritical’ behaviour

SO(5) in a very different microscopic model



Two duality webs

NCCP1 ~_ /dual NCCP1
SO(5)-invariant theory
QED— ™ dual QED—
Gross-Neveu Gross-Neveu
More but see recent simulations:
. _ Qin, He, You, Lu, Sen, Sandvik, Xu, & Meng ’'17
SpeCUIatNeIY- Zhang, He, Eggert, Moessner, & Polilmann 17

easy-plane NCCP1 dual easy-plane NCCP1
\ /

O(4)-invariant theory?

e .

QED dual QED



Particle-vortex duality for complex scalar field
L = |0®* + m?|®|* + \|®|*
Lauwal = (0 — ia)w]® — m?|w|? + N |w|* + ...

Gauge invariant U(1) order parameter:

(I) N Ma inserts monopole in (0

L and Lqual describe same system with different bare couplings.
May have same IR behaviour and in fact they do.

Recently, extension of particle-vortex duality idea to

Dirac fermion Wang & Senthil '15; Metlitski & Vishwanath ’16;
Seiberg et al ’16; Karch & Tong '16; Son ’15;



[Aside: strong and weak duality]

for two field theories A and B which share the
‘microscopic’ symmetry G = G4 NGp:

Weak statement (derived):

Theories A and B have the same operator content and
anomalies.

Strong statement (conjectured):
Theories A and B become the same under RG

A

B

For DCPs, it is the strong dualities that imply large emergent
symmetries.



Dualities

[NCCP1 dual NCCP1]
//
SO(5)-invariant theory
QED— ™ dual QED—

Gross-Neveu Gross-Neveu



Self-duality of NCCP?

L=1(0— z'a)z\2 -+ mQ|z|2 - )\(\z|2)2 |

21 — W2

Apply particle-vortex duality to both species of spinon ., . .-
Liuwal = |(0 —ia)w|? — m?|w|* + A(|w|*)*+r(Wio,w)? + ...

We have SU(2) for z. But a priori, do not have SU(2) for w.

pr + 10y Ny + 1N, N,

in L M, 227 29 \21\2 — \32‘2

N Ldual 2?1]321]1 MZ ‘wl‘Z — |w2‘2




Self-duality of NCCP?

Conjecture: at the critical point of L,
duality becomes a self—duality

L =10 —ia)z? + A\(|2*)? > Laua = (0 — ia@)w|?> + A(|w]?)?

Dual field w has emergent SU(2) symmetry. This rotates
Neel into VBS

Yz + 19y Nz +iN, N,
in L M, 227 %o \21\2 — \22\2
N Lqual  2wsw; M3 \wl\z — |w2\2

This implies SO(5) (and vice versa).



Boson-fermion dualities

NCCP1 dual NCCP1
N e
SQ(5)-invariant theory
QED— N dual QED —
Gross-Neveu Gross-Neveu
easy-plane NCCP1 dual easy-plane NCCP1
\ /

O(4)-invdriant theory?

d .

QED dual QED




QED

Two 2-component Dirac fermions, dynamical U(1) gauge field

2

Loeqd = Z zﬂjﬁa% + - global flavour symmetry
j=1

This is a theory of bosons: all gauge invariant operators are
bosonic. What are the ‘elementary’ ones?

Naively, bilinears: 1;@5ij Qﬁj

In fact monopole is an boson: f; M,
Borokhov, Kapustin, Wu '02

Possible duality with easy-plane NCCP1 model

Karch & Tong ‘16 Wang, AN, Metlitski, Xu, Senthil 17



QED —Gross-Neveu

Two 2-component Dirac fermions, dynamical U(1) gauge field

»qud—gn — Z Z.?vzjlpawj T ¢77E¢ T V(¢)

SN

Ising scalar tuned to critical point

Elementary ‘order parameters’

fiMe  fIM, ¢

5 real components...



Dual representations of 5 order parameters
Conjecture: duality to NCCP1, emergent SO(5)

1T./\/la > > Pz — 1Py U(l)VBS

SU(Q)ﬂavour {

M, - » N, + i,

SO(3)spin
T ¢ —— N } p

Under previous assumptions about stability of SO(5) fixed point,

either symmetry can protect emergent SO(5) (at critical point)
Wang, AN, Metlitski, Xu, Senthil ’17



Dual representations of 5 order parameters

QED—GN NCCP1
symmetries symmetries

FIMy, —— ve =iy U(1l)yps

SU(Z)ﬂavour

fQTMa ° g Nﬂ? _I_iNy
SO(3)spin

T ¢ < > NZ

2 (4) 4
NCCP1 [’80(5) —0J Z X(S,a) + A Z Xa,abb T K Z XC(LCL)CLCL
a=1,2 a,b=1,2 a=1,2
Tuning parameter Neel-VBS anisotropy  “Z4” VBS anisotropy

QED-GN  Lso(s) + szé? T )‘,X5(5)55 T .

Ising mass Higher anisotropy



Dual representations of 5 order parameters

QED—GN NCCP1
symmetries symmetries

FIMy, —— ve =iy U(1l)yps

SU(Z)ﬂavour

fQTMa ° g Nﬂ? _I_iNy
SO(3)spin

T ¢ < > NZ

2 (4) 4
NCCP1 [’80(5) —0J Z X(S,a) + A Z Xa,abb T K Z XC(LCL)CLCL
a=1,2 a,b=1,2 a=1,2
Tuning parameter| Neel-VBS anisotropy “Z4” VBS anisotropy

QED-GN  Lsos) + szé? T )‘/X5(5)55 T . assumed

Ising mass Higher anisotropy irrelevant



[Aside: duality building blocks]

elementary bosonic duality

1
DA®]? — |®]* +— |Dow|* — |w|* 1 >—adA
70
elementary boson-fermion duality
_ 1 1 1
i P a1 +— |Dow|* — |w|* + =—adA + —ada + — AdA
2T 47 ST
1 1 1
+— |Daw|* — |w|* ad A ada AdA
2T 47 ST

“S” and “T” operations

— make background gauge field dynamical
— add level 1 Chern Simons term for background gauge field

integrate out gauge field /6% Jadd = 5(A)

more handwavingly: deform each side to reach new fixed point



Can we make SO(5) explicit?
— In field theory?

— In lattice model?



Can we make SO(5) explicit?

?
WZW model g _ / <E(Vﬁ)2 4 Strowmes) + Swzw
g

Not well-defined ctm theory (nonrenormalizable),
not useful for calculations

Possible alternative: QCD with Nf= Ng= 2

L = Z 10,y (0, — 1a, )y + ...
v=1,2
This theory has exact and the same anomalies as DCP

One way to see: couple to 7l and integrate out fermions in large mass
expansion (Abanov-Wiegmannization): gives WZW model



SO(5) anomaly

SO(5) cannot be incorporated in a microscopic 2+1D model,
due to anomaly.

spin-1/2 of SO

U(1)yss monopole

Must live at surface of SO(5) SPT (‘topological paramagnet’)
with correct response to SO(5) gauge field (1, ny, ng, ng, ns)

QCD description implies a 3+1D parton construction for this
SPT. Is there a nicer picture for its wavefunction?
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Pseudocriticality

Quasi—universality at a weak first order transition,
due to nearby unphysical fixed point.

: _ : Nienhuis et al 79
lllustrate using Q-state Potts model in 2d  o"00°0 05 o atanino 80

Q. =14 @4 line of Potts

/ critical points

For QQ 2 Q., slow RG flow due to ¢~ exp T
inaccessible nearby fixed point. vV — Q.




Pseudocriticality

Same topology of RG flows in many other theories,
with different ‘deformation parameter’ 7

Small 7 — 7..: RG flows attracted to quasiuniversal flow line

T A

Tx ) N 5 Y, 6\/7'0;7'*
~ g—const

Jirrelevant

Jirrelevant

e Effective exponents, etc. drift as A flows
e However, these drifts are quasiuniversal when ¢ is large

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil ’17



Application to NCCP?
NCCP' in d=3 plausibly in this regime with £ > 640

dA sheet of tricritical points

RG fixed points for NCCP-
In d dimensions

merging of critical
+ tricritical points

Conjecture based on large n,
2+€, 4-¢, replica limit.

sheet of critical points

1

Slice at constant n=2 (NCCP):

Can explain ubiquitous

'drifts’ at DCP as quasiuniversal /

feature of flow line

Can also be made / )
Compat|b|e W|th 80(5) Jirrelevant

AN, Chalker, Serna, Ortuno, Somoza '15 Wang, AN, Metlitski, Xu, Senthil ’17
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SO(5) in a very different model

Classical dimers in 3D: columnar ordering transition
Argued to be described by NCCP?1 Powell, Chalker 08

Chen, Gukelberger, Trebst, Alet, Balents, 09

t
dimer liquid dimer crystal
. —E/T
4 = Z ¢ Vary interaction ¢ on squares
fully-packed Also, fixed interaction on cubes
dimer configs Charrier & Alet

JQ model and loop model had SO(3) x lattice symmetry.
Here, only lattice x U(1).



SO(5) in a very different model

LRO for .. + i, Columnar order parameter

operator which inserts N = (N, Ny, N,)
monomer (NCCP1 monopole) 6-fold anisotropy

-—‘f’r? -
a—--s — n
| 5

‘ “-‘r J—Iy

t

dimer liquid dimer crystal

Microscopic symmetry (¥@zs ¥ys Ny, Ny, N.) = SO(5)?
U1) x lattice

Emergence of SO(5) is allowed here:

L="Lsor +0J Y XD a3 X0, +r XA 4
a=1,2 a=1,2 a=3,4,5



Classical dimers: numerics
Check emergent U(1) symmetry for (N, , ¥z)

1.05 ; 1.05 - ——T;
—— 24
—— 32
1.00 1.00 - —— 48
—— 56
—— 64
0.95 0.95

0.950) 0.952
J

Moment ratios consistent with SO(5) to very good precision
Confirmation that SO(5) is generic

Sreejith, AN, Powell, in preparation



Outlook

Emergent SO(5) in Neel—VBS transition and related
models to very high precision

Conjectured duality webs for SO(3)-symmetric and easy-plane
deconfined criticality. Further simulations for fermionic theories?

Picture for ‘quasiuniversal’ behaviour due to nearby fixed-point
annihilation. Applications to other guantum phase transitions?

Connection to 3+1D SO(5) topological paramagnet
Nice model for this?
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Strategy for simulations U

Heisenberg AFM — stat mech of loops in spacetime

Change basis on B sublattice so singlet is .

% (10)41@)5 + @) 4l @)5)

Two spins with S.S coupling: . 8
o O s X 1O

Imaginary time

b

Graphical representation for partition function:

Z(8) = Tr (6—5tH)5/6t: Z () /

coloured
loop configs



Strategy for simulations U

Heisenberg AFM — stat mech of loops in spacetime

Change basis on B sublattice so singlet is .

% (10)41@)5 + @) 4l @)5)

Two spins with S.S coupling: . 8
o O s X e

Imaginary time

b

Graphical representation for partition function:

Z(8) = Tr (6—5tH)5/6t: Z () /

coloured
loop configs



‘Old’ emergent U(1) symmetry for VBS
<0
= A\,

~ 4 QJDDD" I0.10

0.08

) 0.08
P
_gl 0.06 L 0.06

7 0.04 o

< 0.02 ‘

3
0.00

-9 1

0.00

X, =100

(cos 46"y = 0.0028(14) (Variances normalized to one)



Interactions

Loop configuration given by
breaking up each node

e

4 = Z exp (JZQOQO)

coloured
loop configs

Interaction is between n.n. nodes on same sublattice



Mapping to NCCP' model

Analogous to Heisenberg magnet.

(transfer matrix =¥ spin-'/2 on square lattice)

Exact mapping of loop model to lattice CP' model.
Microscopic gauge group is compact, but:

Explicit Berry phase calculation for hedgehogs:
I, 0, -1, -
only quadrupled hedgehogs in continuum.

(Dual point of view: VBS vortex = spinon worldline)

PRL 107, 110601 (2011), PRB 88, 134411 (2013), and arXiv: 506.06798



Hedgehogs

R\ ﬂT,*
@0 | 1 ¢

D

\|

Microscopic hedgehog fugacity proportional to |, i, - |, -i

Coarse-grained hedgehog fugacity vanishes = NCCP!

(More precisely: only quadrupled hedgehogs in continuum)



Direct, apparently continuous transition

| ‘ w ‘ w ‘ ‘ w ‘ w ‘
Neel order VBS order
0.030 + | \ - 0.12
0.025 / 0.10
0.020 0.08
= S
0.015 0.06
0.010 0.04
0.005 0.02
! 1 l 1 l 1 L ittt ms *--N-:“
0.000 0.088 0.0882 0.0884 0.0886 0.00

70,0888 0.089
J
Node-node interaction——



Scaling collapse fails

(e.g. order parameters, heat capacity......)
Diverging Neel stiffness Critical exponents drift
sl L i
- 32 - 64 - 120 ¢ 256 - 512 0.65

- 40 - 8 - 160 - 320

e 52 <« 100 < 200 - 400 i e Iy
= Uyss
3 3 0.6 | N
% 2t E} % * |95|
w m &
o % . 0.55 T
= 2 = |13 D]
. A ' I )
@ -/V's(*]c) 05 - J

00 200 500 -

| 1
= L I T
\ - _
f o 0.45 |
0 . . b $ 3

| 1 1 1 1 | 1 1 1 I | I I I I E 1 ! 1 1 T | | 1 1 | 1 1
0.088 0.0885 0.089 50 100 200 500
J L

Power law divergence, not log (cf Sandvik ’10)



Violation of unitarity bounds

Assuming G(r,L) = L=Y f(r/L),
anomalous dimensions for Neel/VBS become negative at large size

T I
= 08
~—
= o5
1071 + B
07
N
Py 3065
& S sl
o 0 100 300 500
~— L
Z,
> %%%§ 9 =
123 I o
@ T 1, i
%%ﬂ- ? ?
% 7] % % :
I . >
20 50 100 200 ) G§ BUt 77 i O

for any unitary CFT
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2 5 10 20 50 100 200
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