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Two questions for today

2) Is there a disorder induced spin liquid in Pr2Zr2O7 and other non-Kramers pyrochlores?

arXiv:1706.09238

1) When does the U(1) QSL 
become unstable against 

spinon condensation?
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Spin Ice

R3+ ions 
form lattice  
of corner-
sharing 

tetrahedra 
(pyrochlore)

R3+= Ho3+, Dy3+ : 
anisotropy forces 

magnetic moments 
to point along local 
<111>  directions 

Ground 
states: “2 in, 

2 out”

Magnetic Rare Earth Oxides: R2M2O7

W ⇠
✓
3

2
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Excitations: “magnetic monopoles”

large entropy at T=0!=)

 Harris et al., PRL 79, 2554 (1997) 

Neutron scattering: pinch points

incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.
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Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).
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Experiment (Ho2Ti2O7)  
Fennell et al, Science 326, 415 (2009)
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Quantum Spin Ice
Favours “2 in, 2 out” states Introduces quantum fluctuations{

Effective Hamiltonian from perturbation theory

Hermele et al., PRB 69, 064404 (2004) 

H = J
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Quantum Spin Ice

Ground state: U(1) 
quantum spin liquid 

with gapless 
emergent photons

S(q, t = 0) S(q,!)

Pinch points disappear at T=0 Linearly dispersing photon
Shannon et al., PRL 
108, 067204 (2012); 
O. B. et al. PRB 86, 

075154 (2012) 

Effective Hamiltonian from perturbation theory

Favours “2 in, 2 out” states Introduces quantum fluctuations{H = J
X

hiji

Sz
i

Sz
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+ V [{Sx
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, Sy
j
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Spectrum of quantum spin ice

Spinons (3 in 1 out/1 in 3 out 
tetrahedra)

Photons 
Transverse fluctuations of gauge field

Visons (dual topological 
defects)

⇠ g

⇠ J

⇠ V

H = J
X

hiji

Sz
i

Sz
j

+ V [{Sx
i

, Sy
j

}]
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How and when does the U(1) QSL die?
How does it die?

By condensation of topological 
excitations

When does it die?

When the gap to these 
excitations closes

Purpose of this talk: 
(1) a controlled perturbative calculation of the phase boundaries of the U(1) QSL in 

quantum spin ice by considering the gap to topological excitations 
(2) application of this calculation to non-Kramers quantum spin ice candidates with 

quenched structural disorder
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Usual Approaches

-Uncontrolled treatment of constraints 
-Tendency to overestimate QSL regime

-QMC not always possible (sign problems) 
-Many other methods are limited to small system size 
-Can be hard to interpret

(1) Gauge Mean Field Theory (gMFT)

S+
r,r+eµ

= �†
rs

+
r,r+eµ

�r+eµ

S�
r,r+eµ

= �rs
�
r,r+eµ

�†
r+eµ gauge field s±r,r+eµ

⇠ eiAr,r+eµ

spinon operators �†
r,�r

Mean field decoupling gives non-interacting 
spinon hopping Hamiltonian + constraints 
enforced on average

�†
r�r = 1local constraints on spinon operators

Savary & Balents, PRL 108, 037202 (2012) 
Lee et al, PRB 86, 104412 (2012)

(2) Numerics Banerjee et al, PRL 100, 047208 (2008) 
Shannon et al, PRL 108, 067204 (2012) 
Kato & Onoda, PRL 115, 077202 (2015)
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An alternative method
Perturbation theory in manifolds of classical monopole (spinon) states

H = J
X

hiji

Sz
i

Sz
j

+ V [{Sx
i

, Sy
j

}]

Finding lowest energy state containing M 
spinons in a system of Nt tetrahedra

⇢ =
M

Nt
<< 1

Expand energy of system in terms of spinon density

E(⇢) = Nt

⇥
✏0(J, V ) + ✏1(J, V )⇢+ ✏2(J, V )⇢2 + ...

⇤

Calculate coefficient of linear term 
using perturbation theory in V

Change in sign of ε1 +ve to -ve means 
that it becomes energetically for 
spinons to proliferate =) Instability of the U(1) QSL
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Worked Example: unfrustrated XXZ model
Perturbation theory in manifolds of classical monopole (spinon) states

H = Jzz
X

hiji

Sz
i S

z
j � J±

X

hiji

�
S+
i S�

j + S�
i S+

j

�
J± > 0

State with M spinons

First order PT: Effective Hamiltonian

H(1)
e↵ = �J±PM

2

4
X

hiji

S+
i S�

j + S�
i S+

j

3

5PM

acts within set of M spinon states

projector onto manifold of 
state containing M spinons What is the ground state of the effective Hamiltonian?

Classical energy (0th order PT)

E = E0 +M
Jzz
2

= E0 +Nt⇢
Jzz
2

, ✏ =
Jzz
2
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Worked Example: unfrustrated XXZ model

As long as spinons 
are well separated 
(assume low density 
ρ<<1), each one 
has 6 neighbouring 
bonds that can be 
flipped to propagate 
the monopole

H(1)
e↵ = �J±PM

2

4
X

hiji

S+
i S�

j + S�
i S+

j

3

5PM What is the ground state of the effective Hamiltonian?

=)
Constant column 
sum of effective 
Hamiltonian for 
ρ<<1

X

↵

⇣
H(1)

e↵

⌘

↵�
= �6MJ±

Ground state is equal 
weight sum over all M 
spinon states is an 
eigenstate of Hamiltonian

=)
|�0i =

r
1

NM

X

|↵i2{|Mi}

|↵i

with eigenvalue �6MJ±
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Worked Example: unfrustrated XXZ model
|�0i =

r
1

NM

X

|↵i2{|Mi}

|↵iTotal energy of ground state for M spinons

E(⇢) = Nt

⇥
✏0(J, V ) + ✏1(J, V )⇢+ ✏2(J, V )⇢2 + ...

⇤
cf.

✏1 =
Jzz
2

� 6J± +O(J2
±)=)

Estimate of ground state instability to first order: J (c)
± =

Jzz
12

⇡ 0.083Jzz

E = E0 +M

✓
Jzz
2

� 6J± +O(J2
±)

◆
= E0 +Nt⇢

✓
Jzz
2

� 6J± +O(J2
±)

◆
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Worked Example: unfrustrated XXZ model
✏1 =

Jzz
2

� 6J± +O(J2
±) Second order corrections to energy

Diagonal corrections to the energy 
(act on same bond twice)

⇣
H(2)

e↵

⌘

↵↵
=

J2
±

Jzz
(�4Nt + 8M)

Correction to ground 
state energy

Diagonal correction 
to energy of spinons

V = �J±
X

hiji

⇥
S+
i S�

j + S�
i S+

j

⇤

H0 = Jzz
X

hiji

Sz
i S

z
j

H(2)
e↵ = �PMV

1� PM

H0 � (Ecl
0 +M Jzz

2 )
V PM
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Worked Example: unfrustrated XXZ model
✏1 =

Jzz
2

� 6J± +O(J2
±) Second order corrections to energy

V = �J±
X

hiji

⇥
S+
i S�

j + S�
i S+

j

⇤

H0 = Jzz
X

hiji

Sz
i S

z
j

H(2)
e↵ = PMV

1� PM

H0
V PM

Corrections to first order hopping process:

Modifies hopping matrix element of spinons

�J± ! �J±

✓
1 +

J±
Jzz

◆

12
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Worked Example: unfrustrated XXZ model
✏1 =

Jzz
2

� 6J± +O(J2
±) Second order corrections to energy

V = �J±
X

hiji

⇥
S+
i S�

j + S�
i S+

j

⇤

H0 = Jzz
X

hiji

Sz
i S

z
j

H(2)
e↵ = PMV

1� PM

H0
V PM

Further neighbour hoppings

12

Introduces 24 further neighbour hoppings 
for every spinon (assuming ρ<<1)

�
J2
±

Jzz
Matrix element
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Worked Example: unfrustrated XXZ model

Equal weight superposition of all spinon states 
is still an eigenstate of effective Hamiltonian

|�0i =
r

1

NM

X

|↵i2{|Mi}

|↵i

Instability of ground state occurs when coefficient of ρ changes sign

J (c)
± =

1

28

⇣p
23� 3

⌘
Jzz ⇡ 0.064Jzz

Energy: E(⇢) = E0 � 4Nt
J2
±

Jzz
+ ⇢Nt

✓
Jzz
2

� 6J± � 28
J2
±

Jzz

◆
+O(⇢2, J3

±)
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Comparison with other approaches
H = Jzz

X

hiji

Sz
i S

z
j � J±

X

hiji

�
S+
i S�

j + S�
i S+

j

�

This 
Calculation

QMC : J (c)
± = 0.052Jzz

0 0.2
[1-3]

Classical : J (c)
± = 0.167Jzz

GMFT : J (c)
± = 0.19Jzz[4]

[1] Banerjee et al., PRL 100, 047208 (2008) 
[2] Kato and Onoda, PRL 115, 077202 (2015) 
[3] Lv et al., PRL 115, 037202 (2015) 
[4] Savary and Balents, PRL 108, 037202 (2012)  

J±

PT : J (c)
± = 0.064Jzz



A more general model
Quantum spin ice in a staggered 

field, coupling uniformly to Sz

Equivalently: hardcore bosons 
with nearest neighbour repulsion 

on the pyrochlore lattice

QMC: three 
separate 

Coulomb spin 
liquids with 

different filling 
factors

Lv et al., PRL 115, 037202 (2015)

Hb =
X

hiji

h
V ninj � t

⇣
b†i bj + bi b

†
j

⌘i
� µ

X

i

ni

Calculate superfluid 
instability from closing 

of spinon gap in PT

H =
X

hiji

⇥
JzzS

z
i S

z
j � J±

�
S+
i S�

j + S�
i S+

j

�⇤� h
X

i

Sz
i



A more general model
Quantum spin ice in a staggered 

field, coupling uniformly to Sz

Equivalently: hardcore bosons 
with nearest neighbour repulsion 

on the pyrochlore lattice

Lv et al., PRL 115, 037202 (2015)

H =
X

hiji

⇥
JzzS

z
i S

s
j � J±

�
S+
i S�

j + S�
i S+

j

�⇤� h
X

i

Sz
i

Hb =
X

hiji

h
V ninj � t

⇣
b†i bj + bi b

†
j

⌘i
� µ

X

i

ni

Calculate superfluid 
instability from closing 

of spinon gap in PT

QMC: three 
separate 

Coulomb spin 
liquids with 

different filling 
factors



Comparison with QMC simulations of spinon 
dynamics

arXiv:1707.00099

Monte Carlo  simulation of 
two spinon continuum in dynamic 

structure factor

Jzz = 1, J± = 0.046

cf. perturbation theory 
calculation

⇡ 0.33Jzz

Minimum of lower continuum 
edge

2� ⇡ 0.35Jzz
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The story so far
- We have illustrated a perturbation theory calculation of the point at which the U(1) 

QSL of quantum spin ice becomes unstable against spinon condensation

- The calculation gives excellent agreement with published QMC studies of the 
unfrustrated XXZ/hardcore boson model on the pyrochlore lattice

But the XXZ model is already quite well studied…. where else can we apply this?
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Random Transverse Field Ising Model

HRTFIM = J
zz

X

hiji

Sz

i

Sz

j

�
X

i

h
i

Sx

i

spin ice-like exchange 
interactions

distribution of  
random fields hi

weak transverse fields: 
disorder induced U(1) QSL

strong transverse fields: 
topologically trivial 

quantum paramagnet

Griffiths phase:  
QSL with rare regions of 

paramagnet

Instability to spinon condensation
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Pr2M2O7 (M=Sn, Zr, Hf)

�cf ⇠ 100K

Non-Kramers ions Pr3+

Crystal field ground 
state is a doublet 
with large gap to 

excited states 

Pr2Zr2O7

Degeneracy of ground doublet protected by lattice symmetry 
not time reversal

[111] view through 
a Pr site

Any local deviation from this 
trigonal symmetry lifts 
degeneracy of doublet

doublet

doublet

singlet

Kimura et al, Nat. Commun. 4 
1934, (2013)

=) Pseudospin-1/2 
description

Sz
i =", #

Why is this model of interest?
Model for non-Kramers doublets in the presence of weak structural disorder

=) �h
i

Sx

i
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Pr2Zr2O7
Kimura et al, Nat. Commun. 4, 1934, (2013)

Very broad maximum in 
heat capacity at T~2K

cf. much narrower 
peak in spin ice

Susceptibility 
shows AF 

Curie-Weiss  
temperature

Spin ice like correlations with finite 
correlation length which increases with 

decreasing energy
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Distribution of transverse fields in Pr2Zr2O7

Inelastic neutron scattering in applied [100] field

Localized spin excitations with a broad distribution of gaps
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Inferring distribution of transverse fields from 
inelastic neutron scattering

p(h) =
2�

⇡

1

h2 + �2

� = 0.54meV

Find broad Lorentzian distribution of h q integrated scattering intensity

Distribution of transverse fields in Pr2Zr2O7

HRTFIM+H = Jzz
X

hiji

Sz
i

Sz
j

�
X

i

h
i

Sx

i

� g
z

µ
B

Hext ·
X

i

ẑ
i

Sz
i
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Is Pr2Zr2O7 a disorder induced QSL?

Kimura et al, Nat. Commun. 4, 1934, (2013)
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Is Pr2Zr2O7 a disorder induced QSL?

To answer this from a theory point of view we want to know two things

1) What is the stability regime of the U(1) QSL in the random transverse 
field Ising model on the pyrochlore lattice?

2) What is the strength of interaction Jzz and distribution of transverse 
field p(hi) in currently studied samples of Pr2Zr2O7?

Perturbation theory calculation is well suited to answer this: 
-constructed in real space not momentum space, doesn’t rely on translational symmetry 
-by considering state of M spinons 1<<M<<Nt have “self-averaging” of spinon 
environments, and obtain result which depends only on average and variance of h

Can find out by comparing thermodynamic data with Numerical Linked Cluster (NLC) 
Calculations 
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Stability criterion for U(1) QSL?
HRTFIM = J

zz

X

hiji

Sz

i

Sz

j

�
X

i

h
i

Sx

i

Consider once again a state of M spinons

Effective Hamiltonian from perturbation theory

H0 = Jzz
X

hiji

Sz
i S

z
j

V = �
X

i

h
i

Sx

i

H(M)
e↵ = Ecl

0 +M
Jzz
2

+H(M)
1 +H(M)

2

H(M)
1 = PMV PM

H(M)
2 = �PMV

1� PM

H0 � (Ecl
0 +M Jzz

2 )
V PM

1 << M << Nt

allows averaging over 
spinon environments

neglect spinon-spinon 
interactions
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First order perturbation theory
H(M)

1 = PMV PM

Every spinon surrounded by 3 flippable spins

average of h

Equal weight superposition of all M spinon 
states is a good eigenstate for 1<<M<<Nt

|�M i = 1p
NM

X

|↵i2|{M}i

|↵i

Column sum:

For 1<<M<<Nt = �3M
h

2

X

↵

⇣
H(M)

1

⌘

↵�
= �1

2

X

i2flippable

hi
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Second order perturbation theory
H(M)

2 = �PMV
1� PM

H0 � (Ecl
0 +M Jzz

2 )
V PM

Diagonal contributions from flipping 
same spin twice

Second order spinon hopping

Possible on 6 nearby bonds for every spinon (M<<Nt)

⇣
H(M)

2

⌘

↵↵
= � Nt

2Jzz
h2 +

3M

8Jzz
h2

Matrix element �hkhl

4J
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Second order perturbation theory
Lowest energy state for M spinons |�M i = 1p

NM

X

|↵i2|{M}i

|↵i

E(M) = Ecl
0 � Nt

2Jzz
h2 +M

 
Jzz
2

� 3h

2
+

3h2

8
� 3hkhl

2

!

Instability determined by coefficient of M

Jzz
2

� 3h

2
+

3h2

8
� 3hkhl

2
= 0

nearest neighbour correlation 
function of random fields

Take uncorrelated case hkhl = h
2

�h =

q
h2 � h

2

Jzz
2

� 3h

2
+

7�h2 � 5h
2

8J
= 0
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Stability regime of U(1) QSL

Jzz
2

� 3h

2
+

7�h2 � 5h
2

8J
= 0

Stability criterion in terms of average and standard deviation of distribution of transverse fields

�h =

q
h2 � h

2
Stable U(1) QSL

Paramagnet

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

h
Jzz

δh J z
z

cf. schematic Savary-
Balents phase diagram

PRL 108, 087302 (2017)

Instability calculation corresponds 
to large scale proliferation of 
monopoles in “typical” regions. 
Corresponds to transition into fully 
paramagnetic phase.
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Is Pr2Zr2O7 a disorder induced QSL?

To answer this from a theory point of view we want to know two things

1) What is the stability regime of 
the U(1) QSL in the random 
transverse field Ising model 
on the pyrochlore lattice?

2) What is the strength of 
interaction Jzz and distribution of 
transverse field p(hi) in currently 
studied samples of Pr2Zr2O7?

Can find out by comparing 
thermodynamic data with Numerical 
Linked Cluster (NLC) Calculations 

Jzz
2

� 3
h

2
+

7�h2 � 5h
2

8J
> 0

Stable U(1) QSL

Paramagnet

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

h
Jzz

δh J z
z
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Modelling Pr2Zr2O7

HRTFIM = J
zz

X

hiji

Sz

i

Sz

j

�
X

i

h
i

Sx

i

p(h) =
2�

⇡

1

h2 + �2

Need parameterisation 
of interactions

Strategy:  
1) assume Lorentzian distribution of transverse fields

3) Compare back to high energy scattering data

2) Fit available thermodynamic 
data to Numerical Linked 
Cluster (NLC) expansion of 
Hamiltonian with Jzz and Γ as 
adjustable parameters

0 1 2 3 4 5 6 70.0

0.5

1.0

1.5

T(K)

C
(J
/K
/m
ol
P
r)

Petit et al, PRB 94, 165153 (2016)

Kimura et al, Nature Commun. 4, 1934 (2013)

Koohpayeh et al, J. Cryst. Growth 402, 291 (2014)
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Numerical Linked Cluster (NLC) calculations
Estimating quantities in the thermodynamic limit from a 
series of exact diagonalizations of small clusters [1]

(….)

c0 c1 c2 cn

Estimate of extensive quantity O per site in terms of cluster multiplicities L and weights W

hOi
N

=
X

n

LnWn; Wn = hOicn �
X

s⇢n

Ws

Disorder averages can be taken 
term by term in expansion

Wn = hOicn �
X

s⇢n

W s

[1] Rigol et al, PRL 97, 187202 (2006);  [2] Tang et al,  PRB 91, 174413 (2015)
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NLC description of thermodynamics in Pr2Zr2O7

Inverse susceptibility

Reasonable description of thermodynamics obtained with parameterisation:

Jzz = 0.08meV� = 0.38meV

HRTFIM = J
zz

X

hiji

Sz

i

Sz

j

�
X

i

h
i

Sx

i

p(h) =
2�

⇡

1

h2 + �2

Effective TCW<0 despite 
spin-ice like Jzz>0

Captures downturn at low 
temperature seen in 
experiment

gz = 4.9

Data from [1] Bonville et al, PRB 94, 134428 (2016) 
[2] Koohpayeh et al, J. Cryst. Growth 402, 291 (2014)
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NLC description of thermodynamics in Pr2Zr2O7

Heat capacity

Reasonable description of thermodynamics obtained with parameterisation:

HRTFIM = J
zz

X

hiji

Sz

i

Sz

j

�
X

i

h
i

Sx

i

Broad maximum at T~2K

Accurate descrption of 
high T tail of heat 
capacity

Overestimates height of 
maximum

Jzz = 0.08meV� = 0.38meVp(h) =
2�

⇡

1

h2 + �2
gz = 4.9

Data from [1] Petit et al, PRB 94, 165153 (2016)
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Evolution of heat 
capacity maximum in 
applied [110] field

0 1 2 3 4 5 6 70

2

4

6

8

10

H(T)

T m
ax
(K
)

Jzz = 0.08meV� = 0.38meVp(h) =
2�

⇡

1

h2 + �2
gz = 4.9

Data from [1] Petit et al, PRB 94, 165153 (2016)

NLC description of thermodynamics in Pr2Zr2O7

HRTFIM+H = Jzz
X
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Comparison to scattering data in [100] field
Onsite correlation function calculated 
for central spin of 7-site cluster in ED

Cii(!) = 4
X

|↵i

|h0|Sz
i |↵i|2�(! � E↵)

Compared to q-integrated scattering data from [1] Wen et al, PRL 118, 107206 (2017)

Jzz = 0.08meV� = 0.38meVp(h) =
2�

⇡

1

h2 + �2
gz = 4.9

from [1]
cf. � = 0.54meV

Agrees with high enery tail 
for all values of applied field

Overestimates scattering 
near Zeeman energy but 
qualitatively correct



41

What does this model suggest about the ground 
state of Pr2Zr2O7?

Wish to apply stability criterion Jzz
2

� 3
h

2
+

7�h2 � 5h
2

8J
> 0

Stable U(1) QSL

Paramagnet

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

h
Jzz

δh J z
z

p(h) =
2�

⇡

1

h2 + �2

Problem: Lorentzian distribution lacks 
well defined moments h, h2

Workaround: apply finite cut-off hmax 
to distribution and observe trajectory 
in phase diagram as function of hmax

Jzz = 0.08meV� = 0.38meV

p(h) =
�

arctan
�
h
max

�

� 1

�2 + h2

h 2 [0,1]

h 2 [0, h
max

]
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What does this model suggest about the ground 
state of Pr2Zr2O7?

Jzz = 0.08meV� = 0.38meV

p(h) =
�

arctan
�
h
max

�

� 1

�2 + h2 h 2 [0, h
max

]

42

Series of distributions
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What does this model suggest about the ground 
state of Pr2Zr2O7?

Jzz = 0.08meV� = 0.38meV

p(h) =
�

arctan
�
h
max

�

� 1

�2 + h2 h 2 [0, h
max

]

43

Series of distributions
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What does this model suggest about the ground 
state of Pr2Zr2O7?

Jzz = 0.08meV� = 0.38meV

p(h) =
�

arctan
�
h
max

�

� 1

�2 + h2 h 2 [0, h
max

]

44

Series of distributions
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What does this model suggest about the ground 
state of Pr2Zr2O7?

Jzz = 0.08meV� = 0.38meV

p(h) =
�

arctan
�
h
max

�

� 1

�2 + h2 h 2 [0, h
max

]

45

Series of distributions

h
max

= 0.08meV

Stable U(1) QSL

Paramagnet
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In Pr2Zr2O7 the distribution 
extends up to at least 2 meV: 
deep in PM phase
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Is this consistent with scattering data?

Is a paramagnetic 
ground state precluded 
by scattering data?
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Dynamics from exact diagonalization
Calculate real space correlations as a 
function of energy in 16-site ED within 
parameterised model

Nearest Neighbour

Second Neighbour

Third Neighbour

0.00 0.05 0.10 0.15 0.20 0.25 0.30
-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

ω(meV)

C
ij(ω

)
Cij(!) = 4

X

|↵i

h0|Sz
i |↵ih↵|Sz

j |0i�(! � E↵)

Short ranged spin ice like correlations, 
with correlation length increasing with 
decreasing energy
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Dynamics from exact diagonalization
S(q,!) =

1

Nuc

X

i,j

(ẑi · ẑj � (ẑi · q̂)(ẑj · q̂))Cij(!)e
iq·(ri�r)

Broadened remnants of spin ice correlations at finite energy

Wen et al, PRL 118, 107206, (2017)

Kimura et al, Nat. Commun. 4, 1934, (2013)
Petit et al, PRB 94, 165153, (2016)
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What about other Pr pyrochlores?
Can evaluate prospects by looking 
at shape of heat capacity curves

Clean exchange spin ice (classical)

Quantum spin ice (QMC data from 
Huang et al, arXiv:1707.00099)

Lorentzian 
distribution of  

non-interacting two 
level systems 

(strong disorder 
limit)

Temperature axis scaled 
by temperature of specific 
heat maximum
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What about other Pr pyrochlores?
Can evaluate prospects by looking 
at shape of heat capacity curves

Clean exchange spin ice (classical)

Quantum spin ice (QMC data from 
Huang et al, arXiv:1707.00099)

Lorentzian 
distribution of  

non-interacting two 
level systems 

(strong disorder 
limit)

Temperature axis scaled 
by temperature of specific 
heat maximum

Pb [2]

Hf [1]

Zr [3] Sn [4]

[1] Sibille et al, PRB 94, 024436 (2016) 
[2] Hallas et al, PRB 91,104417 (2015) 
[3] Petit et al, PRB 94, 165153 (2016) 
[4] Zhou et al, PRL 101, 227204 (2008)

?

Gapped spinons in 
Pr2Sn2O7?



51

arXiv:1706.09238

Conclusions
Perturbation theory calculation of energy cost of introducing spinons is an 
effective means of finding ground state instability of U(1) QSL phase of 
quantum spin ice

Parameterising a random transverse field Ising model for  Pr2Zr2O7 leads 
to the conclusion that currently studied samples are deep within a 
topologically trivial paramagnetic phase

Pr2Sn2O7 is a good candidate for further investigation in the light of the 
disorder induced QSL scenario

Thanks for listening!


