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Motivating example: The Kitaev chain

» The Kitaev chain

H= Z[ftCJCJJrlJFACJJrICJJrhC] 7“26;(:]
J J

J-1 7 Jj+1

» Phase diagram: there are only two phases:

Topological * Trivial M
1t

lul = 2l¢|

» Topologically non-trivial phase is realized when 2|¢| > |u|.



» The topological phase is characterized by (i) a bulk Z5 topological
invariant:

exp [z /‘" dk Az(k)} ==1
where A(k) = i(u(k)|du(k)) is the Berry connection.

» (ii) Majorana end states:

e(k)
gap I % e=0 §
|l > 2l lul < 2]

/\’Y

> Characterized by the Z2 topological invariant ~ the even/odd Majorana
end states.




The Kitaev chain with TR or reflection symmetry

The Kitaev chain can be studied in the presence of time-reversal or
reflection symmetry.

Te;T ' =¢; (TiT ' =—i) or Rc;R™'=ic_;.

Once we impose more symmetries (T" or R), we distinguish more phases.
Phases are classified by an integer Z

There is a topological invariant written in terms of Bloch wave functions.

1 .
v=y5-/ dkAz() (integer)

Ex: For Ny copies of the Kitaev chain H = S0, H with || < 2|¢|, the
topological invariant is v = Ny.
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The Kitaev chain with interactions

The 1d Kitaev chain: H = Ziv:fl H® with TR or reflection symmetry
THT'=H o RHR '=H
Add interactions; Can we destropy the topological phase by interactions?,
H — H+wV
l.e., Is it possible to go from topological to trivial ?
Interestingly, the answer is Yes! [Fidkowski-Kitaev(10)]

You can show there is a (rather complicated) interaction V that destroys
the topological case.

Only possible when Ny = 8 (Ny =0 mod 8)



Issues and Goal

Interaction

Topological Trivial 91 o
Two distinct phases ? Single phase!

Clearly, something is missing in non-interacting classification. We have not
explored the phase diagram "hard enough".

Various other examples in which the non-interacting classification breaks
down.

Non-interacting topological invariants are not enough/spurious.

Goal: find many-body invariants for fermionic symmetry-protected
topological phases.
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Main results [arXiv:1607.03896 and arXiv:1609.05970]

We have succeeded in construction many-body topological invariants for
many fermion SPT phases.

These invariants do not refer to single particle wave functions (Bloch wave
functions). They are written in terms of many-body ground states |¥).

C.f. Many-body Chern number.

Strategy behind the construction (later). [Hsieh-Sule-Cho-SR-Leigh (14),
Kapustin et al (14), Witten (15)]



The Kitaev chain with reflection

» Consider Partial reflection operation Rpar¢, Which acts only a part of the
system.

Rpm‘t

—_——~—

» We claim the phase of the overlap
Z = (Y[Rpart| V)
is quantized, and serves as the many-body topological invariant.

> (Similar but somewhat more complicated invariant for TR symmetric case.)



» Numerically check (blue filled circles).
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» The phase of Z is the 8th root of unity.




Strategy behind the construction

In the quantum Hall effect, the many-body Chern number is formulated by
putting the system on the spatial torus:
P,
Y

+v
v

X

Introduce the twisting boundary condition by U(1), and measure the
response: Ground state on a torus with flux |U(®,, D))

Berry connection in parameter space

. 0
Ai = WU (Do, By)| 5751V (P, Dy))

Many-body Chern number [Niu-Thouless-Wu (85)]:

27 27
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Strategy behind the construction

» A famous saying

5. L
ISITHEREANYTHING THEY
CANTT D02

» However, new phases of matter requires new kinds of manifolds,
unoriented manifolds. E.g. Klein bottle




» For topological phases with reflection symmetry, we twist boundary
conditions using the symmetry of the problem (reflection)

S 4
L 4

U(z + L,y) = "V (z,y)
U(z,y+ L) =" ¥(z,y)

L 4
L 4

A 4 U(t+T,z)=V(t —x)




» Partial reflection introduces a “crosscap” in space time:

t

[T e T S




More general considerations

For condensed matter systems with symmetries, we can consider
2(X,1,4) = [ Digi] exp—S(X,m, A, 60 &)

X: spacetime, n: “structure” (e.g., spin, pin, etc.), A: background gauge
field, ¢;: matter field.

For orientation-reversing symmetries (time-reversal, reflection, etc.),
unoriented spacetime (with pin structure) plays the role of an external
background field.

For gapped topological phases, we expect Z(X,n, A) consists of a
topological term:

Z(Xv'r]?A)Nexp[iStOP(XvnzAr'”)+"’} (2)
Stop are our many-body topological invariants.

For SPT phases (i.e., no topological order, unique ground state), Siop are
expected to be classified by cobordism theory. [Kapustin et al (14), Freed et
al(14-16)]



Why does the real projective plane know "8*?

> Interesting mathematics... [Kapustin et al (14), Witten (15), Freed et
al(14-16)]

» Watch a Youtube video (thanks: Dennis Sullivan):
https://www.youtube.com/watch?v=7ZbbhBQEJmI

Topology: The connected sum of 8 copies of Boys Surface is
immersion-cobordant to zero. The addition and the cobordism are
illustrated here.



Higher dimensions — (3+1)d with inversion

» Consider *He-B:

K .
H= /d?’k\lﬁ HI)U(K), Hk)=| 2m H DIk
Aok —2 4y

W(k) = (1 (K), ¥y (K), ] (—k), =l (—k)T
> Inversion symmetry:
LI~ = il ()
» Topologically protected surface Majorana cone (stable when the surface is
inversion symmetric)

> Characterized by the integer topological invariant at non-interacting level.



Many-body topological invariant

Previous studies indicate the non-interacting classification breaks down to
Z16. Surface topological order. [Fidkowski et al (13), Metlitski et al (14),

Wang-Senthil (14)]
» We consider partial inversion Ipq-: on a ball D:

Z = (V|Ipart|¥)

> The spacetime is effectively four-dimensional projective plane, RP*.



Calculations

» Numerics on a lattice:
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» Matches with the analytical result

; 2
Z = exp —% + %ln(Z) — %C(3) (?) +]

» C.f. topologically ordered surfaces: [Wang-Levin, Tachikawa-Yonekura,
Barkeshli et al (16)]
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The Kitaev chain with Time-reversal — “partial time-reversal”

Start from the reduced density matrix for the interval I, p; := Trz|W)(¥|.

I consists of two adjacent intervals, I = I U I>.

I
<>

e
I, I

We consider partial time-reversal acting only for I1; pr — p?l.

Partial time reversal ~ partial transpose has to be properly defined for
fermionic systems [Shaporian-Shiozaki-Ryu 17];

(led to new entanglement measure, fermionic entanglement negativity.)
The invariant:

Z = Trlpsp; '],



Z =Tr[prp; '],

L
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> The invariant "simulates" the path integral on RP?
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Calculations

» Analytical calculations in the zero correlation length limit:

1+i 1 ..
Tr(prp;') = TR "

» Numerically checked away from the zero correlation length (red triangles).
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More on partial transpose

» The partial transpose for bosons; definition: for the density matrix pa,ua,,

(1) (2)>

1 (2 D (2
(e; = ()‘PAIUA2|61€ € Wel )>

1 2
< o ( )‘,DAluA2|€

where |e§1’2)> is the basis of Ha, 4,.

» Can detect quantum correlation comes from off diagonal parts of density
matrices. [Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02),
Plenio (05) ...]

» Entanglement negativity and logarithmic negativity

1
(Tr|p |=1), &a=log Tr|p£2|



Issues in fermionic systems

» Fermionic version of the partial tranpose has been considered previously.
E.g., [Eisler-Zimboras]

» Two issues:

> (i) Partial transpose of fermionic Gaussian states are not Gaussian

> Partial transpose of bosonic Gaussian states is still Gaussian; easy to compute
b%w using the correlation matrix
> p*1 can be written in terms of two Gaussian operators O :

1—4 1414
T _ o
P 3 + + 2

> Negativity estimators/bounds using Tr[\/O4O_] [Herzog-Y. Wang (16),
Eisert-Eisler-Zimboras (16)]
> Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

> (ii) Fails to capture "Majorana dimers” in the Kitaev chain

O_

» Our new definition of partial time-reversal solves these issues



Issues in fermionic systems (2): The Kitaev chain

» Consider log negativity £ for two adjacent intervals of equal length.
(L = 40 = 8)

(a) 06 — - - —— -
Topological Trivial ©-0 Eq.(4) ||
%=X Ref. [54]
O'4nnxngxﬂxﬂﬂﬂxnnn &~ Eq.(9)
w & v-v Eq.(31)

0.2 I T

0.0 ] ‘ ‘ ‘
» Vertical axis: p/t ranging from 0 to 6.
> (Blue circles) is computed for the bosonic many-particle density matrix in
the Ising chain with periodic boundary condition.
> (Red crosses) curves are computed for the fermionic many-particle density

matrix according to the rules by Eisler-Zimboras.

» Log negativity fails to capture Majorana dimers.
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Partial transpose for fermions — our definition

In the Majorana representation,

R1 o2k 21
= E We,r R(Cpdy «** Crigy, ) ChY =+ Cy
_ [|k| Kk Kok T 721
= 2 :w“»"' BTNt Cgye Cply Gy

where R satisfies: R(c) = ic, R(M1M2) = R(M1)R(M>)
Furthermore,

R
(P2 =pf, () =pa, (Pa®@ - @px)F =) @

Fermions Gaussian states stay Gaussian after partial TR,
pir=0., phi=0_,

Possible to develop the free fermion formula.
Define log negativity as

=InTr|pf| = InTr /Oy O_



Comparison

» Comparison:

(a) 06 — . — :
Topological Trivial ©0 Eq.(4) ||
»%—< Ref. [54]
0'4nnxnnnﬂﬂﬂﬂnnnnn 4~ Eq.(9) |]
W v—v Eqg. (31) |{
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> (Green triangles) are computed for the fermionic many-particle density
matrix according to our rule. (Computed numerically)
> (Orange triangles) is computed using the free fermion formula:

M & .
E=In D (VAi+VI-XN) %

=1



Summary

We have succeeded in constructing many-body topological invariants for
SPT phases.

These invariants do not refer to single particle wave functions (Bloch wave
functions). They are written in terms of many-body ground states |¥).

Analogous to go from the single-particle TKNN formula to to the
many-body Chern number.

Many-body invariants in other cases (e.g., time-reversal symmetric
topological insulators) can be constructed in a similar way.



Outlook

» Many future applications, in particular, in numerics.
» And .7

5 10 15 20
Edge site #

[Ningyuan-Owens-Sommer-Schuster-Simon (13)]



