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Motivating example: The Kitaev chain

I The Kitaev chain

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ

∑
j

c†jcj

I Phase diagram: there are only two phases:

I Topologically non-trivial phase is realized when 2|t| ≥ |µ|.



I The topological phase is characterized by (i) a bulk Z2 topological
invariant:

exp

[
i

∫ π

−π
dkAx(k)

]
= ±1

where A(k) = i〈u(k)|du(k)〉 is the Berry connection.

I (ii) Majorana end states:

I Characterized by the Z2 topological invariant ' the even/odd Majorana
end states.



The Kitaev chain with TR or re�ection symmetry

I The Kitaev chain can be studied in the presence of time-reversal or
re�ection symmetry.

TcjT
−1 = cj (T iT−1 = −i) or RcjR

−1 = ic−j .

I Once we impose more symmetries (T or R), we distinguish more phases.
Phases are classi�ed by an integer Z.

I There is a topological invariant written in terms of Bloch wave functions.

ν =
1

2π

∫ π

−π
dkAx(k) = (integer)

I Ex: For Nf copies of the Kitaev chain H =
∑Nf

a=1 H
a with |µ| < 2|t|, the

topological invariant is ν = Nf .



The Kitaev chain with interactions

I The 1d Kitaev chain: H =
∑Nf

a=1 H
a with TR or re�ection symmetry

THT−1 = H or RHR−1 = H

I Add interactions; Can we destropy the topological phase by interactions?;

H → H + wV

I.e., Is it possible to go from topological to trivial ?

I Interestingly, the answer is Yes! [Fidkowski-Kitaev(10)]

I You can show there is a (rather complicated) interaction V that destroys
the topological case.

I Only possible when Nf = 8 (Nf ≡ 0 mod 8)



Issues and Goal

I Clearly, something is missing in non-interacting classi�cation. We have not
explored the phase diagram "hard enough".

I Various other examples in which the non-interacting classi�cation breaks
down.

I Non-interacting topological invariants are not enough/spurious.

I Goal: �nd many-body invariants for fermionic symmetry-protected
topological phases.



Main results [arXiv:1607.03896 and arXiv:1609.05970]

I We have succeeded in construction many-body topological invariants for
many fermion SPT phases.

I These invariants do not refer to single particle wave functions (Bloch wave
functions). They are written in terms of many-body ground states |Ψ〉.

I C.f. Many-body Chern number.

I Strategy behind the construction (later). [Hsieh-Sule-Cho-SR-Leigh (14),

Kapustin et al (14), Witten (15)]



The Kitaev chain with re�ection

I Consider Partial re�ection operation Rpart, which acts only a part of the
system.

I We claim the phase of the overlap

Z = 〈Ψ|Rpart|Ψ〉

is quantized, and serves as the many-body topological invariant.

I (Similar but somewhat more complicated invariant for TR symmetric case.)



I Numerically check (blue �lled circles).

I The phase of Z is the 8th root of unity.



Strategy behind the construction

I In the quantum Hall e�ect, the many-body Chern number is formulated by
putting the system on the spatial torus:

I Introduce the twisting boundary condition by U(1), and measure the
response: Ground state on a torus with �ux |Ψ(Φx,Φy)〉

I Berry connection in parameter space

Ai = i〈Ψ(Φx,Φy)| ∂
∂Φi
|Ψ(Φx,Φy)〉

I Many-body Chern number [Niu-Thouless-Wu (85)]:

Ch =
1

2π

∫ 2π

0

dΦx

∫ 2π

0

dΦy(∂ΦxAy − ∂ΦyAx)



Strategy behind the construction

I A famous saying

I However, new phases of matter requires new kinds of manifolds,
unoriented manifolds. E.g. Klein bottle



I For topological phases with re�ection symmetry, we twist boundary
conditions using the symmetry of the problem (re�ection)



I Partial re�ection introduces a �crosscap� in space time:

I The spacetime is e�ectively the real projective plane, RP 2.



More general considerations

I For condensed matter systems with symmetries, we can consider

Z(X, η,A) =

∫
D[φi] exp−S(X, η,A, φi) (1)

X: spacetime, η: �structure� (e.g., spin, pin, etc.), A: background gauge
�eld, φi: matter �eld.

I For orientation-reversing symmetries (time-reversal, re�ection, etc.),
unoriented spacetime (with pin structure) plays the role of an external
background �eld.

I For gapped topological phases, we expect Z(X, η,A) consists of a
topological term:

Z(X, η,A) ∼ exp[iStop(X, η,A, · · · ) + · · · ] (2)

I Stop are our many-body topological invariants.

I For SPT phases (i.e., no topological order, unique ground state), Stop are
expected to be classi�ed by cobordism theory. [Kapustin et al (14), Freed et

al(14-16)]



Why does the real projective plane know �8�?

I Interesting mathematics... [Kapustin et al (14), Witten (15), Freed et

al(14-16)]

I Watch a Youtube video (thanks: Dennis Sullivan):

https://www.youtube.com/watch?v=7ZbbhBQEJmI

Topology: The connected sum of 8 copies of Boys Surface is
immersion-cobordant to zero. The addition and the cobordism are
illustrated here.



Higher dimensions � (3+1)d with inversion

I Consider 3He-B:

H =

∫
d3kΨ†(k)H(k)Ψ(k), H(k) =

[
k2

2m
− µ ∆σ · k

∆σ · k − k2

2m
+ µ

]
Ψ(k) = (ψ↑(k), ψ↓(k), ψ†↓(−k),−ψ†↑(−k))T

I Inversion symmetry:
Iψ†σ(r)I−1 = iψ†σ(−r)

I Topologically protected surface Majorana cone (stable when the surface is
inversion symmetric)

I Characterized by the integer topological invariant at non-interacting level.



Many-body topological invariant

I Previous studies indicate the non-interacting classi�cation breaks down to
Z16. Surface topological order. [Fidkowski et al (13), Metlitski et al (14),

Wang-Senthil (14)]

I We consider partial inversion Ipart on a ball D:

Z = 〈Ψ|Ipart|Ψ〉

I The spacetime is e�ectively four-dimensional projective plane, RP 4.



Calculations

I Numerics on a lattice:
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I Matches with the analytical result

Z = exp

[
−
iπ

8
+

1

12
ln(2)−

21

16
ζ(3)

(
R

ξ

)2

+ · · ·
]

I C.f. topologically ordered surfaces: [Wang-Levin, Tachikawa-Yonekura,
Barkeshli et al (16)]



The Kitaev chain with Time-reversal � �partial time-reversal�

I Start from the reduced density matrix for the interval I, ρI := TrĪ |Ψ〉〈Ψ|.

I I consists of two adjacent intervals, I = I1 ∪ I2.

I We consider partial time-reversal acting only for I1; ρI −→ ρT1
I .

I Partial time reversal ' partial transpose has to be properly de�ned for
fermionic systems [Shaporian-Shiozaki-Ryu 17];

I (led to new entanglement measure, fermionic entanglement negativity.)

I The invariant:

Z = Tr[ρIρ
T1
I ],



I

Z = Tr[ρIρ
T1
I ],

I The invariant "simulates" the path integral on RP 2 :

= = = =



Calculations

I Analytical calculations in the zero correlation length limit:

Tr(ρIρ
T1
I ) =

1 + i

4
=

1

2
√

2
eiπ/4

I Numerically checked away from the zero correlation length (red triangles).
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More on partial transpose

I The partial transpose for bosons; de�nition: for the density matrix ρA1∪A2 ,

〈e(1)
i e

(2)
j |ρ

T2
A1∪A2

|e(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l |ρA1∪A2 |e

(1)
k e

(2)
j 〉

where |e(1,2)
i 〉 is the basis of HA1,A2 .

I Can detect quantum correlation comes from o� diagonal parts of density
matrices. [Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02),

Plenio (05) ...]

I Entanglement negativity and logarithmic negativity

1

2
(Tr |ρT2

A | − 1), EA = log Tr |ρT2
A |



Issues in fermionic systems

I Fermionic version of the partial tranpose has been considered previously.
E.g., [Eisler-Zimborás]

I Two issues:
I (i) Partial transpose of fermionic Gaussian states are not Gaussian

I Partial transpose of bosonic Gaussian states is still Gaussian; easy to compute
by using the correlation matrix

I ρT1 can be written in terms of two Gaussian operators O±:

ρ
T1 =

1 − i

2
O+ +

1 + i

2
O−

I Negativity estimators/bounds using Tr [
√
O+O−] [Herzog-Y. Wang (16),

Eisert-Eisler-Zimborás (16)]
I Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

I (ii) Fails to capture �Majorana dimers� in the Kitaev chain

I Our new de�nition of partial time-reversal solves these issues



Issues in fermionic systems (2): The Kitaev chain

I Consider log negativity E for two adjacent intervals of equal length.
(L = 4` = 8)

I Vertical axis: µ/t ranging from 0 to 6.

I (Blue circles) is computed for the bosonic many-particle density matrix in
the Ising chain with periodic boundary condition.

I (Red crosses) curves are computed for the fermionic many-particle density
matrix according to the rules by Eisler-Zimborás.

I Log negativity fails to capture Majorana dimers.



Partial transpose for fermions � our de�nition

I In the Majorana representation,

ρR1
A =

∑
κ,τ

wκ,τ R(cκ1m1
· · · cκ2k

m2k
) cτ1n1

· · · cτ2ln2l

=
∑
κ,τ

wκ,τ i
|κ| cκ1

m1
· · · cκ2k

m2k
cτ1n1
· · · cτ2ln2l

where R satis�es: R(c) = ic, R(M1M2) = R(M1)R(M2)
I Furthermore,

(ρR1
A )R2 = ρRA, (ρRA)R = ρA, (ρ1

A ⊗ · · · ⊗ ρ
n
A)R1 = (ρ1

A)R1 ⊗ · · · ⊗ (ρnA)R1

I Fermions Gaussian states stay Gaussian after partial TR,

ρR1
A = O+, ρR1†

A = O−,

Possible to develop the free fermion formula.
I De�ne log negativity as

E := ln Tr |ρR1
A | = ln Tr

√
O+O−



Comparison

I Comparison:

I (Green triangles) are computed for the fermionic many-particle density
matrix according to our rule. (Computed numerically)

I (Orange triangles) is computed using the free fermion formula:

E = ln

 M∑
i=1

(
√
λi +

√
1− λi)

√
Pf (S̃ − iσ2)

Pf (S − iσ2)2





Summary

I We have succeeded in constructing many-body topological invariants for
SPT phases.

I These invariants do not refer to single particle wave functions (Bloch wave
functions). They are written in terms of many-body ground states |Ψ〉.

I Analogous to go from the single-particle TKNN formula to to the
many-body Chern number.

I Many-body invariants in other cases (e.g., time-reversal symmetric
topological insulators) can be constructed in a similar way.



Outlook

I Many future applications, in particular, in numerics.
I And ...?

NbSe3 Möbius strip

[Ningyuan-Owens-Sommer-Schuster-Simon (13)]


