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Two types of symmetric topological phases

SPT --- symmetry protected topological phases: (Pollmann, Berg, Turner, Oshikawa, Chen, 
Liu, Gu, Wen, Wang, Senthil, Lu, Vishwanath, Zaletel, Cheng…)

Example: Haldane spin chain, integer quantum Hall states, topological insulators…

Features: 

• no topological order

• anomalous edge states protected by symmetry

SET --- symmetry enriched topological phases: (Wen, Essin, Hermele, Mesaros,YR, 
Barkeshli, Chen, Wang, Senthil, Lu, Vishwanath, Zaletel, Watanabe, Cheng, Bonderson….)

Example: toric code, gapped quantum spin liquids, fractional quantum Hall states…

Features: 

• topological order (anyon excitations in 2d)

• symmetry can be fractionalized (e.g. e/3 quasiparticle in Laughlin’s state).



Motivations

• Are there guiding principles to search for topological phases in strongly 
correlated quantum systems?



Motivations: usual translation symmetry

• Hastings-Oshikawa-Lieb-Schultz-Mattis theorems (HOLSM) put strong 
constraints on symmetric quantum ground states (liquid phases)

(1) At a fractional filling, translation symmetry forbids a gapped short-range 
entangled ground state.
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• Hastings-Oshikawa-Lieb-Schultz-Mattis theorems (HOLSM) put strong 
constraints on symmetric quantum ground states (liquid phases)

(1) At a fractional filling, translation symmetry forbids a gapped short-range 
entangled ground state.

(2) With a nontrivial projective representation per unit cell, translation 
symmetry forbids a gapped short-range entangled ground state.

In these cases, a gapped liquid phase must be 
topologically ordered.

HOLSM have been served as guiding principles 
to search for realizations of topologically 
ordered phases. (e.g., quantum spin liquids…)

(Lieb, Schultz, Mattis, Oshikawa, Hastings, Watanabe, Po, Vishwanath, Zaletel…)
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Motivations: Magnetic translation symmetry

• What happens with magnetic translation symmetry?

e.g., Charge-conserving particles hopping on square lattice with flux per unit cell

𝜙 = 2𝜋/3 Landau gauge

A global U(1) rotation

Consider free fermions with weak lattice potential:
If 𝜈 = 1/3 filling in the original unit cell, obviously one 
can have a gapped free fermion ground state: 
an integer quantum Hall insulator from Landau level

Chern number =1
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e.g., Charge-conserving particles hopping on square lattice with flux per unit cell

𝜙 = 2𝜋/3 Landau gauge

A global U(1) rotation

In the presence of arbitrary interaction, one can show:
If 𝜈 = 1/3 filling in the original unit cell,
then unique ground state respecting magnetic 
translation dictates:   Chern number = 1 𝑚𝑜𝑑 3

(Lu, Ran, Oshikawa, to appear)



Motivations: Magnetic translation symmetry

• What happens with magnetic translation symmetry?

e.g., Charge-conserving particles hopping on square lattice with flux per unit cell

𝜙 = 2𝜋/3 Landau gauge

A global U(1) rotation

In the presence of arbitrary interaction, one can show:
If 𝜈 = 1/3 filling in the original unit cell,
then unique ground state respecting magnetic 
translation dictates:   Chern number = 1 𝑚𝑜𝑑 3

In this example, we learn that HOLSM + magnetic translation could lead to 
symmetry-enforced “integer” phases.   Can one generalize this phenomena?

Wu, Ho and Lu, 2017 generalizes this for quantum spin Hall



The question

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

are usual translation operations together with certain site-dependent local unitaries.
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projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

We ask the following question: 

Is a gapped SRE liquid (sym-SRE) phase possible? If the answer is yes, what kinds 
of sym-SRE phases are realizable?

e.g.: G=SO(3)x Ising:  spin-1/2 per unit cell, with Ising magnetic translation.

Based on rather complete understanding of bosonic sym-SRE phases, hopefully 
one can obtain systematic results. 
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Main results

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem: 

This system could have a sym-SRE phase if and only if there is a 3-cocycle

such that the slant product:

satisfies

When this condition is satisfied, the 3-cocyles of realizable sym-SRE phases form 
a coset:                  , where        is the kernel of the slant product. And all such 
realizable sym-SRE phases are nontrivial SPTs.



Main results

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem: 

This system could have a sym-SRE phase if and only if there is a 3-cocycle

such that the slant product:

satisfies

Physical meaning: a sym-SRE phase is realizable if and only if its g-symmetry-
defect carries the projective representation 𝛼 . 

Mathematically the slant product      is computing the projective representation carried 
by the g-defect. (discussed by Zaletel 2013 without proof, we provide a proof based on symmetric 
tensor-network formulation)
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(2)                                              where

The first condition is well anticipated: in the enlarged unit cell one needs to have 
regular representation, otherwise HOLSM forbids sym-SRE phases.
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The second condition is not obvious from physical point of view. 

e.g.: N=2 and 𝐺1 = ෨𝑍2, 𝛼 is the projective rep. of 𝐺 = ෨𝑍2 × 𝑍2, like a spin-1/2.

Then (1) is satisfied but (2) is violated.  sym-SRE phase is impossible. 



New HOLSM-type constraint

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Corollary: Assuming                               , where                                             ,

A sym-SRE phase is realizable if and only if the following two conditions are both 
satisified, and the realizable sym-SRE phase must be an SPT.

(1)

(2)                                              where

The second condition is not obvious from physical point of view. 

e.g.: N=2 and 𝐺1 = ෨𝑍2, 𝛼 is the projective rep. of 𝐺 = ෨𝑍2 × 𝑍2, like a spin-1/2.

Then (1) is satisfied but (2) is violated.  sym-SRE phase is impossible. 

even when the HOLSM is silent, there is a new constraint forbidding sym-SRE



A Corollary

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Corollary: Assuming                               , where                                             ,

A sym-SRE phase is realizable if and only if the following two conditions are both 
satisified, and the realizable sym-SRE phase must be an SPT.

(1)

(2)                                              where

Applications: N=2 and 𝐺1 = 𝑍2
𝑇: time-reversal

(a) One Kramer doublet per unit cell  SPT in which Ising defect is Kramer
(b) One non-Kramer doublet per unit cell  Levin-Gu 𝑍2 SPT.

We also provide exactly solvable decorated quantum dimer models realizing these 
symmetry-enforced SPTs.
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Sketch of the proof

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation 𝛼 . 

“only if” part: entanglement pumping:
Long cylinder sample with 𝐿𝑦 = 𝑘 ∙ 𝑁 + 1.

• In a sym-SRE state, the proj. rep. of entanglement 
eigenstates at a given cut is fixed.

• After separating one pair of defects per row,

the net effect is 𝑇𝑥
𝑜𝑟𝑖𝑔.

. 
 The g-defect must carry 𝛼.



Sketch of the proof

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation 𝛼 . 

“if” part: symmetric tensor-network construction

1D-MPS, 2D-PEPS, and 3D generalizations

figures from R. Orus, 
Annals Phys. (2014)

Cirac, Verstraete, Vidal, Gu, Levin, Wen, 
White, Xiang….



A brief introduction to tensor-networks
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PEPS

𝐴

𝛼

𝛽
𝛾

𝛿

𝑖

= 𝐴𝛼𝛽𝛾𝛿
𝑖 ~ ∑𝐴𝛼𝛽𝛾𝛿

𝑖 𝑖 ⊗ |𝛼𝛽𝛾𝛿〉

𝐴 𝐵

tensor 
contraction

𝛼

𝛽
𝛾

𝛿

𝑖
𝛽′
𝛾′

𝛿′
=෍

𝛾

𝐴𝛼𝛽𝛾𝛿
𝑖 ⋅ 𝐵𝛾𝛽′𝛾′𝛿′

𝑖′

𝑖′

𝐷

𝑑 𝜓 =෍

𝑖

𝑐𝑖1𝑖2…𝑖𝑛|𝑖1, 𝑖2, … , 𝑖𝑛〉

|𝜓〉

⋯⋯⋯



Symmetric tensor-networks

global symmetries on 
physical wavefunctions

gauge transformation on 
internal legs
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𝑇𝑁 = 𝑊𝑔𝑔 ∘ 𝑇𝑁

The consistency algebraic conditions for 𝑊𝑔 can characterize SPT phases. 

(mathematically: crossed-module extension)
Main advantage: onsite symmetry and spatial symmetry are treated on same footing.

Jiang&YR, 2015, 2016



Sketch of the proof

Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation 𝛼 . 

“if” part: symmetric tensor-network construction
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Consider 2+1D bosonic systems with an onsite symmetry group G, having one 
projective representation 𝛼 of G per unit cell: 

and respecting magnetic translation symmetry:

Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation 𝛼 . 

“if” part: symmetric tensor-network construction

Given a symmetric tensor-network SPT state with a regular representation per unit cell and 
Respecting the usual translation symmetry, and its g-defect carries projective representation 𝛼 ,

there is a prescription to modify it into the tensor-network SPT state with a projective 
representation 𝛼 per unit cell and respecting the magnetic translation symmetry.
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Another picture of symmetry-enforced SPT

Let us consider a familiar situation: G=SO(3)

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell 
respecting regular translation symm.

Quite generically: (Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson,2015)

the spinon e carries the spin-1/2,

the vison m has nontrivial translation symmetry fractionalization:
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Let us consider a familiar situation: G=SO(3)

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell 
respecting regular translation symm.

Quite generically: (Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson,2015)

the spinon e carries the spin-1/2,

the vison m has nontrivial translation symmetry fractionalization:

Consistent with HOLSM, in order to kill the topological order,
there is no way to condense either e or m without breaking symmetry 

: e

: m
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a layer of frustrated Ising model 

Frustrated Ising
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Another picture of symmetry-enforced SPT

What if G=SO(3)xIsing ?

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell 
respecting Ising magnetic translation symm:

the spinon e carries the spin-1/2,

But the vison m can have trivial symmetry fractionalization:

e.g., the previous Z2 spin liquid stacked with 
a layer of frustrated Ising model 

Frustrated Ising
model

Condensing such Ising-odd vison does not break physical symmetry and kills topological order
The resulting sym-SRE phase MUST be an SPT. (anyon-condensation mechanism, Jiang&YR 2016 ) 



• Gauge group: 𝑍𝑁1 × 𝑍𝑁2 ×⋯ & symmetry group: 𝑆𝐺

• e-particles feature nontrivial symmetry fractionalization

• m-particles have trivial fractionalization, but can carry usual quantum numbers

Ω𝑔1 ⋅ Ω𝑔2 = 𝝀 𝒈𝟏, 𝒈𝟐 ⋅ Ω𝑔1𝑔2 Ω𝑔 ~ symmetry defect,  𝜆 ~ certain 𝑚 particle 

• Condensing m-particles without breaking symmetry, which requires:

1. Condensed 𝑚’s carry 1D symmetry irrep: 𝝌𝒎 𝒈

2. 𝜒𝑚(𝑔) ⋅ 𝜒𝑚′(𝑔) = 𝜒𝑚𝑚′(𝑔)

• After condensing those 𝑚’s, we get an sym-SRE phase with 

𝜔 𝑔1, 𝑔2, 𝑔3 ≡ 𝜒𝜆 𝑔2,𝑔3 𝑔1 , [𝜔] ∈ 𝐻3(𝑆𝐺, 𝑈(1))

an SET phase
Condense certain fluxes

an SPT phase

The anyon condensation mechanism to obtain SPT

Jiang&YR, 2016

These results are also obtained by
symmetric tensor-network formulation



A somewhat simple model realizing symm-enforced SPT

• Following the anyon-condensation mechanism, we can design somewhat 
simple models realizing bosonic SPT phases. (need 3-spin interactions)

• The model looks like this:

U(1)-Layer

Ising-Layer

𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊

Global symmetry: U(1) x Ising

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

Condensing 
Ising-odd m-particle

SPT: Ising-defect 
carry ½  U(1) charge 

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

𝑊



𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊Global symmetry: U(1) x Ising

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

𝐻𝑈(1) = −𝑡𝛴𝑏𝑖
+𝑏𝑗 + 𝑉1𝛴𝑛𝑖𝑛𝑗

+𝑉2𝛴𝑛𝑖𝑛𝑗 + 𝑉3𝛴𝑛𝑖𝑛𝑗

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice

𝑡 ≪ 𝑉1 = 𝑉2 = 𝑉3 = 𝑉

In this regime, 𝐻𝑈(1) is in a deconfined

Z2 spin liquid phase:
e-particle carries ½  U(1)-charge.
(Balents,Fisher,Girvin 2001)

A somewhat simple model realizing symm-enforced SPT



A somewhat simple model realizing symm-enforced SPT

𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊Global symmetry: U(1) x Ising

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge

𝐻𝑈(1) = −𝑡𝛴𝑏𝑖
+𝑏𝑗 + 𝑉1𝛴𝑛𝑖𝑛𝑗

+𝑉2𝛴𝑛𝑖𝑛𝑗 + 𝑉3𝛴𝑛𝑖𝑛𝑗

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice

𝑡 ≪ 𝑉1 = 𝑉2 = 𝑉3 = 𝑉

Ising-layer: transverse field Ising spins
on the honeycomb lattice

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

ℎ ≪ 𝑉



A somewhat simple model realizing symm-enforced SPT

𝐻 = 𝐻𝑈(1) +𝐻𝐼𝑠𝑖𝑛𝑔 + 𝜆 ∙ 𝑊Global symmetry: U(1) x Ising

𝐻𝑈(1) = −𝑡𝛴𝑏𝑖
+𝑏𝑗 + 𝑉1𝛴𝑛𝑖𝑛𝑗

+𝑉2𝛴𝑛𝑖𝑛𝑗 + 𝑉3𝛴𝑛𝑖𝑛𝑗

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice

𝑡 ≪ 𝑉1 = 𝑉2 = 𝑉3 = 𝑉

Ising-layer: transverse field Ising spins
on the honeycomb lattice

𝐻𝐼𝑠𝑖𝑛𝑔 = ℎ ⋅ 𝛴𝜎𝑥

ℎ ≪ 𝑉

𝜆 ∙ 𝑊: 3-spin interaction coupling two layers

𝜆0 𝜆𝑐SET: Z2 gauge
e carry ½  U(1) charge 

Condensing 
Ising-odd m-particle

SPT phase

𝑛𝑖
𝜎𝐼

𝜎𝐽

𝜆 ∙ 𝑊 = 𝜆 ∙ ∑(𝑛𝑖−1/2) ⋅ (𝑠𝐼𝐽𝜎𝐼
𝑧𝜎𝐽

𝑧)

𝑠𝐼𝐽=-1 on green bonds, 𝑠𝐼𝐽=+1 otherwise

Ising magnetic translation symmetric
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One can analytically show: 
SPT phase is realized when

𝑡, ℎ ≪ 𝜆 ≪V  and   
𝑡

𝑉
≪

ℎ2

𝜆2 Ising magnetic translation symmetric



Summary

• For 2+1D bosonic systems with proj. rep. per unit cell respecting magnetic 
translation symmetry, we give sufficient and necessary condition for a sym-
SRE phase to exist.

• If such sym-SRE phase exist, it must be SPT (symmetry-enforced SPT). All 
realizable SPT phases form a coset structure.

• Sometimes such sym-SRE does not exist due to nonobvious reason: 

new HOLSM-type constraint

• Simple Model realizations of SPT (via anyon condensation mechansim)
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Thank you!


