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Two types of symmetric topological phases

SPT --- symmetry protected topological phases: (Polimann, Berg, Turner, Oshikawa, Chen,
Liu, Gu, Wen, Wang, Senthil, Lu, Vishwanath, Zaletel, Cheng...)

Example: Haldane spin chain, integer quantum Hall states, topological insulators...
Features:

* no topological order

* anomalous edge states protected by symmetry

SET --- symmetry enriched topological phases: (Wen, Essin, Hermele, Mesaros,YR,
Barkeshli, Chen, Wang, Senthil, Lu, Vishwanath, Zaletel, Watanabe, Cheng, Bonderson....)

Example: toric code, gapped quantum spin liquids, fractional quantum Hall states...
Features:

 topological order (anyon excitations in 2d)
* symmetry can be fractionalized (e.g. e/3 quasiparticle in Laughlin’s state).



Motivations

* Are there guiding principles to search for topological phases in strongly
correlated quantum systems?



Motivations: usual translation symmetry

e Hastings-Oshikawa-Lieb-Schultz-Mattis theorems (HOLSM) put strong
constraints on symmetric quantum ground states (liquid phases)

(1) At a fractional filling, translation symmetry forbids a gapped short-range
entangled ground state.
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constraints on symmetric quantum ground states (liquid phases)

(1) At a fractional filling, translation symmetry forbids a gapped short-range
entangled ground state.

(2) With a nontrivial projective representation per unit cell, translation
symmetry forbids a gapped short-range entangled ground state.

(Lieb, Schultz, Mattis, Oshikawa, Hastings, Watanabe, Po, Vishwanath, Zaletel...)
Spin liquid

In these cases, a gapped liquid phase must be
topologically ordered.

HOLSM have been served as guiding principles
to search for realizations of topologically
ordered phases. (e.g., quantum spin liquids...)




Motivations: Magnetic translation symmetry

* What happens with magnetic translation symmetry?

e.g., Charge-conserving particles hopping on square lattice with flux per unit cell
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Consider free fermions with weak lattice potential: T ;

If v = 1/3 filling in the original unit cell, obviously one
can have a gapped free fermion ground state: ¢ = 2m/3 Landau gauge
an integer quantum Hall insulator from Landau level

Chern number =1
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* What happens with magnetic translation symmetry?
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In the presence of arbitrary interaction, one can show: ! .

If v = 1/3 filling in the original unit cell,
then unique ground state respecting magnetic ¢ = 2m/3 Landau gauge
translation dictates: Chern number = 1 mod 3

(Lu, Ran, Oshikawa, to appear)



Motivations: Magnetic translation symmetry

* What happens with magnetic translation symmetry?

e.g., Charge-conserving particles hopping on square lattice with flux per unit cell
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In the presence of arbitrary interaction, one can show: ! ;

If v = 1/3 filling in the original unit cell,
then unique ground state respecting magnetic ¢ = 2m/3 Landau gauge
translation dictates: Chern number = 1 mod 3

In this example, we learn that HOLSM + magnetic translation could lead to
symmetry-enforced “integer” phases. Can one generalize this phenomena?
Wu, Ho and Lu, 2017 generalizes this for quantum spin Hall



The question

Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:

1, 1,1, 1Ty_1 =g g € Center of G

T, Ty are usual translation operations together with certain site-dependent local unitaries.
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For example, fully frustrated Ising models on the square and honeycomb lattice
satisfy this algebra with g=Ising:

S z v
H=— Z<IJ> SI1JOT10;

srj = +1 on solid bond
s;; = —1 on dashed bond

Ising symm.: [[, o7



The question

Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:

1.T. T_lTy_l =g g € Center of G

Y-

For example, fully frustrated Ising models on the square and honeycomb lattice
satisfy this algebra with g=Ising:

H= =5 155510707 [1, o

srj = +1 on solid bond | |
s;g = —1 on dashed bond [[;07

Ising symm.: [[, o7

1



The question

Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:

1. T T_lTy_l =g g € Center of G

Y-

We ask the following question:

Is a gapped SRE liquid (sym-SRE) phase possible? If the answer is yes, what kinds
of sym-SRE phases are realizable?



The question

Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:

1.T. T_lTy_l =g g € Center of G

Y-

We ask the following question:

Is a gapped SRE liquid (sym-SRE) phase possible? If the answer is yes, what kinds
of sym-SRE phases are realizable?

e.g.: G=SO(3)x Ising: spin-1/2 per unit cell, with Ising magnetic translation.

Based on rather complete understanding of bosonic sym-SRE phases, hopefully
one can obtain systematic results.
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Main results

Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:

TTTyT_lTy_l =g g € Center of G

xr

Theorem:
This system could have a sym-SRE phase if and only if there is a 3-cocycle

wo(a,b,c) € H>(G,U(1)) such that the slant product:

Wwo _ w(g,a,b)w(a,b,q) - [ WO ~u —1 2
35" (a,b) = LD satisfies 050 ~a™ " € H*(G,U(1))

When this condition is satisfied, the 3-cocyles of realizable sym-SRE phases form
a coset: wop - A, , where A, is the kernel of the slant product. And all such

realizable sym-SRE phases are nontrivial SPTs.
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Theorem:
This system could have a sym-SRE phase if and only if there is a 3-cocycle

wo(a,b,c) € H>(G,U(1)) such that the slant product:
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Physical meaning: a sym-SRE phase is realizable if and only if its g-symmetry-
defect carries the projective representation « .
Mathematically the slant product 59 is computing the projective representation carried

by the g-defect. (discussed by Zaletel 2013 without proof, we provide a proof based on symmetric
tensor-network formulation)



A Corollary
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The first condition is well anticipated: in the enlarged unit cell one needs to have
regular representation, otherwise HOLSM forbids sym-SRE phases.
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New HOLSM-type constraint
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Then (1) is satisfied but (2) is violated. sym-SRE phase is impossible.

even when the HOLSM is silent, there is a new constraint forbidding sym-SRE
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Applications: N=2 and G; = Zgz time-reversal

(a) One Kramer doublet per unit cell 2 SPT in which Ising defect is Kramer
(b) One non-Kramer doublet per unit cell = Levin-Gu Z, SPT.

We also provide exactly solvable decorated quantum dimer models realizing these
symmetry-enforced SPTs.
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Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation « .

“if” part: symmetric tensor-network construction

1D-MPS, 2D-PEPS, and 3D generalizations

(a) (b) PEPS
MPS

TYYY

Cirac, Verstraete, Vidal, Gu, Levin, Wen,
White, Xiang....

figures from R. Orus,
Annals Phys. (2014)



A brief introduction to tensor-networks
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Symmetric tensor-networks

lY) = gly)

global symmetries on gauge transformation on
physical wavefunctions internal legs
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Symmetric tensor-networks

lY) = gly)

global symmetries on gauge transformation on

physical wavefunctions internal legs
: : g 2 9
| | 1 " 1 "o
- .. 3
...... e = V[{g % (%3) %6
4
TN =Wy;g°TN

Jiang&YR, 2015, 2016
The consistency algebraic conditions for W, can characterize SPT phases.

(mathematically: crossed-module extension)
Main advantage: onsite symmetry and spatial symmetry are treated on same footing.
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Consider 2+1D bosonic systems with an onsite symmetry group G, having one
projective representation a of G per unit cell: U, “U, = a(a, b)Uy,y

and respecting magnetic translation symmetry:
TmTyTﬂley_l =g g € Center of G

Theorem in physics language: a sym-SRE phase is realizable if and only if its g-
symmetry-defect carries the projective representation « .

“if” part: symmetric tensor-network construction

Given a symmetric tensor-network SPT state with a regular representation per unit cell and
Respecting the usual translation symmetry, and its g-defect carries projective representation « ,

there is a prescription to modify it into the tensor-network SPT state with a projective
representation a per unit cell and respecting the magnetic translation symmetry.
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Another picture of symmetry-enforced SPT

Let us consider a familiar situation: G=SO(3)

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell
respecting regular translation symm.

O:e
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Quite generically: (Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson,2015)
the spinon e carries the spin-1/2,

the vison m has nontrivial translation symmetry fractionalization:
—1p—1 _
10,1, T, im] = —1
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Let us consider a familiar situation: G=SO(3)

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell
respecting regular translation symm.

O:e
@ m

Quite generically: (Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson,2015)
the spinon e carries the spin-1/2,
the vison m has nontrivial translation symmetry fractionalization:

T.T,T, T, 'm] = —1

Consistent with HOLSM, in order to kill the topological order,
there is no way to condense either e or m without breaking symmetry
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Another picture of symmetry-enforced SPT

What if G=SO(3)xIsing ?

A Z2 (toric-code topological order) spin liquid with a spin-1/2 per unit cell
respecting Ising magnetic translation symm:

TL,JTZTyTx_lTy_1 = Ising

Frustrated Ising /
model /

e.g., the previous Z2 spin liquid stacked with
a layer of frustrated Ising model
the spinon e carries the spin-1/2,
But the vison m can have trivial symmetry fractionalization:
—1—1 .
T, T, T, T, [m| = —1 = Ising[m)

Condensing such Ising-odd vison does not break physical symmetry and kills topological order
The resulting sym-SRE phase MUST be an SPT. (anyon-condensation mechanism, Jiang&YR 2016 )



The anyon condensation mechanism to obtain SPT

Condense certain fluxes
an SET phase an SPT phase

* Gauge group: Zy. X Zy., X -+ & symmetry group: SG
B¢ BIOUP: 2N, 2N, Y Y 8TOUP Jiang&YR, 2016

* e-particles feature nontrivial symmetry fractionalization

* m-particles have trivial fractionalization, but can carry usual quantum numbers

Oy, " Qy, = A(g1,92) - Qg,4, Qg ~ symmetry defect, 1~ certain m particle

* Condensing m-particles without breaking symmetry, which requires:

1. Condensed m's carry 1D symmetry irrep: ¥,,(g9)

2. xm(9) Xm'(9) = X (9)

* After condensing those m'’s, we get an sym-SRE phase with

w(g1,92,93) = )(A(gz,gg)(gﬂ» [w] € H3(5G» u(l))



A somewhat simple model realizing symm-enforced SPT

* Following the anyon-condensation mechanism, we can design somewhat
simple models realizing bosonic SPT phases. (need 3-spin interactions)

e The model looks like this:

Global symmetry: U(1) x Ising
H — HU(l) + HISing + /1 y W

Condensing
Ising-odd m-particle

U(1)-Layer ’ ;
O SET: Z2 gauge Ac  SPT: Ising-defect A

W , e carry %2 U(1) charge  carry % U(1) charge
Ising-Layer

Hising = h - Zo*



A somewhat simple model realizing symm-enforced SPT

Global symmetry: U(1) x Ising

e []
O SET: Z2 gauge Ac
e carry % U(1) charge

v

H —_ HU(l) + HISing + A . W

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice

HU(l) = —th:_b] + Vli'ninj
+Vo2nin; + Vilnin;

t<<V1=V2=V3=V

In this regime, Hy (1) is in a deconfined
Z2 spin liquid phase:

e-particle carries % U(1)-charge.
(Balents,Fisher,Girvin 2001)



A somewhat simple model realizing symm-enforced SPT

Global symmetry: U(1) x Ising H = HU(l) + HISing +A-W

U(1)-layer: Half-filled hard-core bosons
on the kagome lattice
HU(l) = —th:_b] + Vli'ninj
+Vo2nin; + Vilnin;

O SET: Z2 gauge Ac A
e carry % U(1) charge

v

. . ' . Ising-layer: transverse field Ising spins
on the honeycomb lattice
s o 6 o o o & o _
Higing = h- 2o

. . o h&V



A somewhat simple model realizing symm-enforced SPT

Global symmetry: U(1) x Ising H = HU(l) + HISing +A-W
Condensing U(1)-layer: Half-filled hard-core bosons
Ising-odd m-particle on the kagome lattice
° . g Hycy = —tZb b, + Vi Zn;n;
_ 1 U(1) i Dj 14NN
0 SET: Z2 gauge Ac SPT phase +VoInm; + VaZngm,

e carry ¥ U(1) charge

. ' ' . Ising-layer: transverse field Ising spins
/o /o VZRN on the honeycomb lattice
o x h&V
— R
. A - W': 3-spin interaction coupling two layers
. s . -
AW =2-¥m—1/2) - (s;;0i0))

NI/ \ i/ S;;=-1 on green bonds, s;;=+1 otherwise
' ’ ' Ising magnetic translation symmetric



A somewhat simple model realizing symm-enforced SPT

Global symmetry: U(1) x Ising H = HU(l) + HISing +A-W
Condensing U(1)-layer: Half-filled hard-core bosons
Ising-odd m-particle on the kagome lattice
: © g Hycy = —tZb b, + Vi Zn;n;
O SET: Z2 gauge Ac SPT phase A v o =0

e carry ¥ U(1) charge +V22ninj + V3Zninj

L N T T feh=h=hal

1% * b Ising-layer: transverse field Ising spins
{1\ on the honeycomb lattice

e

A N N Hising = h - £0*

o
o
| o . h&V
o)
* ’ 'm 'F ' * ’ A« W 3-spin interaction coupling two layers

One can analytically show: A-W=21-3¥n—1/2) - (s070})

SPT phase is realized when

h2
th<<AkV and — <« = . . . .
s v 2 Ising magnetic translation symmetric

S;;=-1 on green bonds, s;;=+1 otherwise



Summary

For 2+1D bosonic systems with proj. rep. per unit cell respecting magnetic
translation symmetry, we give sufficient and necessary condition for a sym-
SRE phase to exist.

If such sym-SRE phase exist, it must be SPT (symmetry-enforced SPT). All
realizable SPT phases form a coset structure.

Sometimes such sym-SRE does not exist due to nonobvious reason:

new HOLSM-type constraint

Simple Model realizations of SPT (via anyon condensation mechansim)
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new HOLSM-type constraint

Simple Model realizations of SPT (via anyon condensation mechansim)

Thank youl!



