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Deconfined Quantum Criticality

describes the direct continuous transition from Néel to VBS in 2D

. > Neither 3D O(3) universality
class (Néel-param)
g » Nor 3D O(2) universality class
% (away from VBS).
g (Z4 anisotropy is dangerously
) @ @ irrelevant
=}
Okubo et al, PRB 2015; Léonard
AF VBS
T and Delamotte, PRL 2015 )
U’H
Néel order parameter (Si - Sj) breaks lattice symm D,
m, = £ > (=1)%TiS; VBS order parameter (Dx, Dy)

New physics: Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher; Science (2004)

e Order parameters of the Néel state and the VBS state are NOT the fundamental

objects, they are composites of fractional quasiparticles carrying S = 1/2



Deconfined quantum criticality

2D J-Q3 model is a Heisenberg model with additional multispin interactions

H=-J) C;=Q Y CyiCuCum, ‘Y °y°
(ijy ! (ijklmn) ! Ct] o.e.w

Cj= (3

Cij Ckl Cmn

-5,-8)
Sandvik, PRL 98, 227202(2007)

e large Q, columnar VBS
e small Q, Néel

e No sign problem

order parameter

o Ideal for QMC study of the
DQC physics

e Scaling violation was resolved

recently Shao, Guo and Sandvik, Science, 352,213(2016)



What about disorder effect to this model?

Introduce randomness to the 2D J-Q3 model

H=— ZJijCij - Z Qijktmn CiiCrConn
(i) (ijklmn)

in three ways
o dilute sites with probability P

® Qjjkimn 1s randomly set to 0 and 2Q, J;; = J constant —, random Q
model

o Jje[l—A 14+ A],Qijkimn = QO constant — random J model



randomness can be relevant

e When randomness is a relevant perturbation under RG, fixed points of
GS phases and critical points appear beyond those realised in pure
systems

e The randomness can increase without bounds in the RG flow:
infinite-randomness fixed point (IRFP)
» dynamic exponent z infinite.

» Mean and typical correlations are different



An example: 1D Random-singlet phase

Occurs in spin-1/2 Heisenberg chains with random exchange couplings

e Each spin is paired with one other spin that maybe very far away
TP R e oS A g™ TB S e

e using SDRG, properties of the Infinite Randomness Fixed Point are
found
> &~ exp(f“’); meaning z — 00
> mean spin correlation C(7) oc 1/r*, dominated by rare long VBs
» But the typical pair C°(r) o< exp(—cr'/?)

Dasgupta and Ma, PRB 22, 1305(1980); D. Fisher, PRB 50, 3799 (1994)



Random-singlet phase: obtained from random Q chain

Clean J-Q; chain dimerizes spontaneously from critical AF at (Q/J), ~ 0.16

i, ,& critical VBS
- - e
ij i jk Il mn 0 Q) QN

e With randomness, the phase transition destroyed

e Disorder Q (J = 0): random singlets form between spinons localized at
domain walls, called amorphous VBS, asymptotically a RS state

SRV EDED 608 58 6

e With random J or random Q, despite the very different local properties,

both exhibit RS properties in long-distance correlations

Y.-R. Shu, et al Phys. Rev. B 94, 174442(2016)



What about two-dimensional systems?

e IRFP was identified in 2D transverse-field Ising models

e However, no Random-singlet state found in 2D



People has been searching RS in various disordered systems

For example, diordered Heisenberg bilayer model
Clean model

H=J) (Si-Si;+82-Sy) +JZZS11 Sai
(i)

e Néel to singlet product state at J,/J; &z 2.522 5

e 3D O(3) universality class;
Landau-Ginzburg-Wilson framework

Disorder models
e Site-diluted randomness: effective interactions form an unfrustrated
network which induces AF order in the dimerized phase
Roscilde and S. Haas, PRL 207206 (2005); Rosclide, PRB 74, 144418(2006)
e Bond-diluted randomness: Mott glass is found, a Griffiths phase
Ma, Sandvik and Yao, arxiv: 1511.07895
e No infinite-disorder fixed point is observed
Y.-C. Lin et al PRB 74, 024427(2006)



e To find RS state, one expects frustrated systems

o In this work, we will show an RS state (Quantum spin liquid state )
with finite dynamic exponent z found in disordered J-Q model



Methods

e SSE Quantum Monte Carlo simulation
Sandvik, PRB, 59, R14157(1999)

e Projector Quantum Monte Carlo simulation with VB basis
Sandvik, PRL 2005; Sandvik and Evertz, PRB 2010



SSE Quantum Monte Carlo method: finite temperature
Tr{Ae P AW,
(A) = r{ eﬁﬂH} 2
e An SSE configuration Tre > We
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Projector Quantum Monte Carlo method:

ground state § = 0

o Obtain ground state: apply the imaginary time evolution operator to an
initial state
U(T — 00)|Ty) — |0)
where U(7) = (—H)" or U(7) = exp (—HT)

e translate average in ground state to classical partition:

) — DUDAU) ) 5 A,
(To|U(T)U(T) %) S W,

A, is the estimator of A



Projector Quantum Monte Carlo method:

ground state § = 0
This is done by

e using VB basis (in the singlet sector S = 0)
» Valence-bonds between sublattice A, B sites

(i) = (| tidy) = | 1))/ V2

» Basis states are products of Valence-bonds

N/2

V) = H(ib,jb) = |(a1,b1) -+ (ans2,bn2))
b1

there are N /2! basis states

> expansion of arbitrary singlet state

) =Y " w|V,),



Projector Quantum Monte Carlo method:
ground state § = 0

e expectation values: transition graphs

e take U(7) = exp (—7H), in SSE
representation; or simply take /]
U(r) = (—H)7, we translate the Vi) V%) ilve)

quantum groundstate expectation to a

classical partition Z = 3 W,
Og® [ ]
I [ ) 1 %Yijy (lvj)Lv
[¢] [¢]

[ ]
<O — L I [ ]
! H ¢ = £1, i,j on the same/different
@)

( * :I .lo oo © > sublattice
o—ole °

» dimer correlatoin, Binder cumulant

> Spin correlations from loop

structure

S8y =( o Ok

are also related to the loop structure
Beach and Sandvik, Nucl. Phys. B
750, 142(2006)

e loop update algorithm are used



The disordered J-Q model

order parameter

:

TN
2 e S
Sa N

S

e Imry-Ma argument: VBS can not exist — Valence-bond glass (VBG)

» different columnar patterns being
energetically favored in different
parts of the lattice

—_—
|

> spinon appears at the site domain

walls meet

» But it’s not clear if the VBG is

paramagnetic!



Site-diluted J-Q3 model
i e

L
-

vacancies: not involved in J and Q

interactions
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For a given dilution P = 0.1 (g=0/(J+ Q)
e Néel order persists for whole range of Q/J, DQC destroyed

e Similar to site-diluted Heisenberg bilayer:

effective couplings between spinons lead to Néel order

e No Random-Singlet state



Random QO model

Qijtimn is randomly set to 0 and 20, J;; = J constant CyCiComn
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e A phase transition is clear seen when Q is adapted
Q>2 M*(L=00)—0



Locate the transition point

Binder ratio

M4
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e The transition away from a long-range ordered phase

e Crossing points of the Binder ratio converge to the transition point, but
drift a lot.



Locate the transition point: spinons

e Spinons play crucial role in DQC
e PQMC by extending valence-bond basis to S = 1: put in 2 unpaired
‘up’ spins
e two spinons are two strings in a background of valence bond loops in the

valence-bond transition-graphs

e Spinon size A: the average number of sites visited by the string



Two movies show A depending on ¢
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Locate the transition point: spinons

e RS state A o< L; in Néel state

e \/L cross at transition point
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Crossing-points of size pairs(L, 2L) for both U and A

| | | | | | | | | | | |
0 0.02 004 006 008 0.1 0.12
/L

e The behaviors of both quantities appear to be roughly in 1/L.
e (Q/))c~13



Dynamic exponent z
To investigate the dynamic exponent z of the proposed RS state, we calculate
the uniform susceptibility yx, of the system
e Due to rare long Valenc-bonds, finite-temperature behavior
o xu x T ®witha=1-d/z
e , divergesifz > d
e We found z > d in the RS phase
e « changes with Q, with z finite, in agreement with proposed VGB on the
kagome lattice
Singh, PRL 104, 177203(2010)
e For O = 4, we found o = 0.62(4), which means z ~ 5.3
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Local susceptibility

e Such VBG behavior can also be shown with the local susceptibility x;

xiox T™¢

e Similar behavior to yx, but lower temperature is needed for showing up
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local susceptibility distribution of a typical realization

Beta= 16 Beta= 32
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J/Q = 0, four temperatures
e There are spins not involved in any Q bond contribute strongly to x;

e but Not the main reason of the divergence of y,: put randomly a Q
bond on the spin to "heal’ it



local susceptibility distribution of a typical realization

Beta= 64

16

e spinons lead to large x;

e bright dots in the rightside are spins with small (S; - S;) to all 4
neighbours



local susceptibility distribution of a typical realization

Beta= 64

16

e spinons lead to large x;

e bright dots in the rightside are spins with small (S; - S;) to all 4
neighbours



Random J model

H=- ZJUCU - Z Qijklmnczfjcklcmn
(i) (ijkimn)
e Jj€[l—A 1+ A]— random J model
e Qjikimn = Q constant

e similar, but weaker divergence behaviors




Is the VBG state a Griffiths phase?

e aphase A within a limited part of a system that is overall in a phase B

e suceptibility also diverges as 7~ due to rare events of large size A



*

Is the VBG state a Griffiths phase?

The long distance spin correlation C and staggered dimer correlation D*

D (L/2,L72)
=

8 16
L

32

64

The dimer correlation

Dx(l'ij) = <Bx (ri)BX(rj)>7

Bx(l’,‘) = S(l‘i) . S(ri + X)

The staggered dimer correlation D}

— D = %)+ Dol + %))

Dj (r) = D«(r) 3

e Forlarge Q/J: C(L/2,L/2) o< 1/I?
e D(L/2,L/2) < 1/L*

o Correlations in Griffiths phases decay exponentially with distance,

which is a fundamental consequence of the rare-event mechanism

e Griffiths phase is ruled out



conclusions

e By introducing disorder in the 2D J-Q model we report and

characterize a 2D RS state with finite dynamic exponent.
e This is a spin liquid state without frustration

e The JQ model mimicks frustrated quantum spin models, such as the
J1-J» Heisenberg model, the RS state found here may correspond to the
same fixed point as that investigated in the S = 1/2 Heisenberg model
on frustrated 2D lattices

Thank you !
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