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Deconfined Quantum Criticality
describes the direct continuous transition from Néel to VBS in 2D

Néel order parameter
ms =

1
N

∑
i(−1)xi+yi Si

〈Si · Sj〉 breaks lattice symm
VBS order parameter (Dx,Dy)

I Neither 3D O(3) universality
class (Néel-param)

I Nor 3D O(2) universality class
(away from VBS).
(Z4 anisotropy is dangerously
irrelevant

Okubo et al, PRB 2015; Léonard
and Delamotte, PRL 2015 )

New physics: Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher; Science (2004)

• Order parameters of the Néel state and the VBS state are NOT the fundamental
objects, they are composites of fractional quasiparticles carrying S = 1/2



Deconfined quantum criticality

2D J-Q3 model is a Heisenberg model with additional multispin interactions

H = −J
∑
〈ij〉

Cij − Q
∑
〈ijklmn〉

CijCklCmn,

Cij = (
1
4
− Si · Sj)

Sandvik, PRL 98, 227202(2007)

• large Q, columnar VBS

• small Q, Néel

• No sign problem

• Ideal for QMC study of the
DQC physics

• Scaling violation was resolved
recently Shao, Guo and Sandvik, Science, 352,213(2016)



What about disorder effect to this model?

Introduce randomness to the 2D J-Q3 model

H = −
∑
〈i,j〉

JijCij −
∑
〈ijklmn〉

QijklmnCijCklCmn

in three ways

• dilute sites with probability P

• Qijklmn is randomly set to 0 and 2Q, Jij = J constant→, random Q
model

• Jij ∈ [1−∆, 1 + ∆],Qijklmn = Q constant→ random J model



randomness can be relevant

• When randomness is a relevant perturbation under RG, fixed points of
GS phases and critical points appear beyond those realised in pure
systems

• The randomness can increase without bounds in the RG flow:
infinite-randomness fixed point (IRFP)

I dynamic exponent z infinite.
I Mean and typical correlations are different



An example: 1D Random-singlet phase

Occurs in spin-1/2 Heisenberg chains with random exchange couplings

• Each spin is paired with one other spin that maybe very far away

• using SDRG, properties of the Infinite Randomness Fixed Point are
found

I ξt ∼ exp(ξψ); meaning z→∞
I mean spin correlation C(r) ∝ 1/r2, dominated by rare long VBs
I But the typical pair Ctyp(r) ∝ exp(−cr1/2)

Dasgupta and Ma, PRB 22, 1305(1980); D. Fisher, PRB 50, 3799 (1994)



Random-singlet phase: obtained from random Q chain

Clean J-Q3 chain dimerizes spontaneously from critical AF at (Q/J)c ≈ 0.16

• With randomness, the phase transition destroyed

• Disorder Q (J = 0): random singlets form between spinons localized at
domain walls, called amorphous VBS, asymptotically a RS state

• With random J or random Q, despite the very different local properties,
both exhibit RS properties in long-distance correlations

Y.-R. Shu, et al Phys. Rev. B 94, 174442(2016)



What about two-dimensional systems?

• IRFP was identified in 2D transverse-field Ising models

• However, no Random-singlet state found in 2D



People has been searching RS in various disordered systems
For example, diordered Heisenberg bilayer model
Clean model

H = J1

∑
〈i,j〉

(S1i · S1j + S2i · S2j) + J2

∑
i

S1i · S2i

• Néel to singlet product state at J2/J1 ≈ 2.522

• 3D O(3) universality class;
Landau-Ginzburg-Wilson framework

1J

J 2

Disorder models
• Site-diluted randomness: effective interactions form an unfrustrated

network which induces AF order in the dimerized phase
Roscilde and S. Haas, PRL 207206 (2005); Rosclide, PRB 74, 144418(2006)

• Bond-diluted randomness: Mott glass is found, a Griffiths phase
Ma, Sandvik and Yao, arxiv: 1511.07895

• No infinite-disorder fixed point is observed
Y.-C. Lin et al PRB 74, 024427(2006)



• To find RS state, one expects frustrated systems

• In this work, we will show an RS state (Quantum spin liquid state )
with finite dynamic exponent z found in disordered J-Q model



Methods

• SSE Quantum Monte Carlo simulation
Sandvik, PRB, 59, R14157(1999)

• Projector Quantum Monte Carlo simulation with VB basis
Sandvik, PRL 2005; Sandvik and Evertz, PRB 2010



SSE Quantum Monte Carlo method: finite temperature

• An SSE configuration
〈A〉 =

Tr{Ae−βH}
Tr e−βH →

∑
c AcWc∑

c Wc

• Sz basis

• diagonal and loop updates

• observables and estimators

• energy estimator : number of operators,
Hc = −n/β

• spin stiffness estimator : winding number
fluctuations

ρs =
〈W2

α〉
Ld−2β

• staggered magnetization
msz =

∑
i(−1)ix+iy siz/N

• uniform suceptibility χu and local
suseptibility χl



Projector Quantum Monte Carlo method:
ground state S = 0

• Obtain ground state: apply the imaginary time evolution operator to an
initial state

U(τ →∞)|Ψ0〉 → |0〉

where U(τ) = (−H)τ or U(τ) = exp (−Hτ)

• translate average in ground state to classical partition:

〈A〉 =
〈Ψ0|U(τ)AU(τ)|Ψ0〉
〈Ψ0|U(τ)U(τ)|Ψ0〉

→
∑

c AcWc∑
c Wc

Ac is the estimator of A



Projector Quantum Monte Carlo method:
ground state S = 0

This is done by

• using VB basis (in the singlet sector S = 0)
I Valence-bonds between sublattice A, B sites

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

I Basis states are products of Valence-bonds

|V〉 =

N/2∏
b=1

(ib, jb) = |(a1, b1) · · · (aN/2, bN/2)〉

there are N/2! basis states

I expansion of arbitrary singlet state

|Ψ〉 =
∑

r

wr|Vr〉,



Projector Quantum Monte Carlo method:
ground state S = 0

• take U(τ) = exp (−τH), in SSE
representation; or simply take
U(τ) = (−H)τ , we translate the
quantum groundstate expectation to a
classical partition Z =

∑
c Wc

• loop update algorithm are used

• expectation values: transition graphs

I Spin correlations from loop
structure

〈Si · Sj〉 = { 0, (i)L(j)L
3
4φij, (i, j)L,

φij = ±1, i, j on the same/different

sublattice

I dimer correlatoin, Binder cumulant
are also related to the loop structure
Beach and Sandvik, Nucl. Phys. B
750, 142(2006)



The disordered J-Q model

• Imry-Ma argument: VBS can not exist→ Valence-bond glass (VBG)

I different columnar patterns being
energetically favored in different
parts of the lattice

I spinon appears at the site domain
walls meet

I But it’s not clear if the VBG is
paramagnetic!



Site-diluted J-Q3 model

vacancies: not involved in J and Q
interactions
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For a given dilution P = 0.1 (q = Q/(J + Q))

• Néel order persists for whole range of Q/J, DQC destroyed

• Similar to site-diluted Heisenberg bilayer:
effective couplings between spinons lead to Néel order

• No Random-Singlet state



Random Q model

Qijklmn is randomly set to 0 and 2Q, Jij = J constant
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• A phase transition is clear seen when Q is adapted
Q ≥ 2,M2(L =∞)→ 0



Locate the transition point

Binder ratio

U =
[〈M4〉]
[〈M2〉]2
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• The transition away from a long-range ordered phase

• Crossing points of the Binder ratio converge to the transition point, but
drift a lot.



Locate the transition point: spinons

• Spinons play crucial role in DQC

• PQMC by extending valence-bond basis to S = 1: put in 2 unpaired
‘up’ spins

• two spinons are two strings in a background of valence bond loops in the
valence-bond transition-graphs

• Spinon size λ: the average number of sites visited by the string



Two movies show λ depending on q

Néel state Random singlet state



Locate the transition point: spinons

• λ/L cross at transition point
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λ ∝ L2
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Crossing-points of size pairs(L, 2L) for both U and λ
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• The behaviors of both quantities appear to be roughly in 1/L.

• (Q/J)c ≈ 1.3



Dynamic exponent z
To investigate the dynamic exponent z of the proposed RS state, we calculate
the uniform susceptibility χu of the system
• Due to rare long Valenc-bonds, finite-temperature behavior

• χu ∝ T−α with α = 1− d/z
• χu diverges if z > d

• We found z > d in the RS phase
• α changes with Q, with z finite, in agreement with proposed VGB on the

kagome lattice
Singh, PRL 104, 177203(2010)

• For Q = 4, we found α = 0.62(4), which means z ≈ 5.3
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Local susceptibility

• Such VBG behavior can also be shown with the local susceptibility χl

χl ∝ T−α

• Similar behavior to χu but lower temperature is needed for showing up
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local susceptibility distribution of a typical realization
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• There are spins not involved in any Q bond contribute strongly to χl

• but Not the main reason of the divergence of χu: put randomly a Q
bond on the spin to ’heal’ it



local susceptibility distribution of a typical realization

Beta=          64 
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• spinons lead to large χl

• bright dots in the rightside are spins with small 〈Si · Sj〉 to all 4
neighbours



local susceptibility distribution of a typical realization
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neighbours



Random J model

H = −
∑
〈i,j〉

JijCij −
∑
〈ijklmn〉

QijklmnCijCklCmn

• Jij ∈ [1−∆, 1 + ∆]→ random J model

• Qijklmn = Q constant

• similar, but weaker divergence behaviors
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Is the VBG state a Griffiths phase?

A

B

• a phase A within a limited part of a system that is overall in a phase B

• suceptibility also diverges as T−α due to rare events of large size A



Is the VBG state a Griffiths phase?
The long distance spin correlation C and staggered dimer correlation D∗
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The dimer correlation

Dx(rij) = 〈Bx(ri)Bx(rj)〉,

Bx(ri) = S(ri) · S(ri + x)

The staggered dimer correlation D∗
x

D∗
x (r) = Dx(r)−

1
2
[Dx(r− x) + Dx(r + x)]

• For large Q/J: C(L/2, L/2) ∝ 1/L2

• D(L/2, L/2) ∝ 1/L4

• Correlations in Griffiths phases decay exponentially with distance,
which is a fundamental consequence of the rare-event mechanism

• Griffiths phase is ruled out



conclusions

• By introducing disorder in the 2D J-Q model we report and
characterize a 2D RS state with finite dynamic exponent.

• This is a spin liquid state without frustration

• The JQ model mimicks frustrated quantum spin models, such as the
J1-J2 Heisenberg model, the RS state found here may correspond to the
same fixed point as that investigated in the S = 1/2 Heisenberg model
on frustrated 2D lattices

Thank you !
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