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Two ways to generate CFT from topological 
phases of matter

gc

Quantum phase transitions

Topological phase 1 Topological phase 2

Domain wall / edges

Topological phase 1 Topological phase 2

Fine tune

Potential general and (perturbatively) stable



Universal data and gapless domain wall of chiral 
topological phases

Braiding T, S matrices and chiral central charge as the universal data of 
topological order (no symmetry).

Ta : Sab : c :

 A Lagrangian subset is defined as:  
(1) All the quasiparticles in M have trivial mutual statistics 
(2) Every quasiparticle that is not in M has nontrivial mutual statistics with at 

least one quasiparticle in M.  
(Michael Levin, 2013)

  A gapped edge is possible if and only if there exists a nontrivial 
Lagrangian subset M.   



Example

Toric code Double semion

(1) All the quasiparticles in M have trivial mutual statistics 
(2) Every quasiparticle that is not in M has nontrivial mutual statistics with at 
least one quasiparticle in M. 

{1, e,m, f} {1, s, s̄, b}

subset:             or subset:{1, e} {1,m} {1, b}



Domain walls between non-chiral topological phases

!
Gapped domain walls of non-chiral topological phases are easily 
understood via S and T matrices in 2D.  
(Tian Lan et al, Phys. Rev. Lett. 114, 076402 (2015)) 
!
!
Lattice model of gapless domain walls can be systematically constructed in 
2D, and can be possibly generalized into higher dimensions. 



A simple example

Toric code model and double semion model



Hamiltonian algebra of domain wall between 
toric code and double semion

Double semion

Toric code

On the boundary the plaquette terms do not commute. 
Hamiltonian algebra:

Next: duality map



Duality and Z2 gauge models

Duality transformation

Z2 Gauge invariant subspace satisfy:

Next: simplify the domain wall



Hamiltonian algebra after duality transformation

Twisted Z2 gauge theory

Z2 gauge theory



Gauge fixing and simplified Hamiltonian algebra

Low energy sector with zero Z2 flux admits a uniform choice of Z2 gauge 
field

Next: solve this algebra



1D model that realizes the same Hamiltonian algebra

After basis change, we can make a uniform Hamiltonian

Introduce spin degrees of freedom, reproduce the previous Hamiltonian 
algebra



Evidence of gapless domain walls

Is it a CFT? If yes, what kind of CFT it is?

Self-duality



Low energy spectrum

Three minimal are observed in 
momentum space. (with N=30) 
!
Starting from the ground state, 
degeneracies of these seven energy 
levels are respectively 1,3,1,6,6,7,8. 
This feature is consistent with the XXX 
model (spin-1/2 AF Heisenberg 
model ).



A comparison of low-energy spectra after folding



 Although exact diagonalization provides some evidences for the similarity 
to XXX model, it is not sufficient to ping down the underlying CFT due to 
finite size effect. 
!
!
 Unbiased numerical methods are very desired. 
!
!
 We developed the state-of-art non-perturbative real space 
renormalization algorithm to study the effective domain wall Hamiltonian.

A comparison of low-energy spectra after folding

Shuo Yang, Zheng-Cheng Gu, Xiao-Gang Wen, PRL 118, 110504 (2017).



Overview

tensor network + renormalization group = tensor network renormalization

e�⌧h

!
Partition function of a 
classical system 
!
!
!
Euclidean path integral of 
a 1D quantum system 
!
!
!
Physical observables of a 
2D quantum system

Z =

X
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Overview

tensor network + renormalization group = tensor network renormalization

B

A
C

RG flow

!
Remove short-range entanglement / correlations 
Generate proper RG flow & correct fixed points 
Recover scale invariance at criticality

Aim

Real space coarse-graining transformation



Tensor renormalization group

Three steps

2. Coarse graining

3. Renormalize tensors 
(multiply tensor by a constant factor)

Levin & Nave (2007)    TRG (LN-TNR)
1. Deform tensors, make a truncation

minimizing local cost functions by SVD
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Tensor renormalization group

Merits of LN-TNR
simple & efficient, widely used 

!
can provide OK results

Drawbacks of LN-TNR
accumulation of short-range entanglement 

!
cannot give the correct structure of non-critical fixed point 

!
cannot explicitly recover scale invariance at criticality

How to improve LN-TNR

LN-TNR is only exact for tree tensor networks 
!

We need loops!

LN-TNR ＋loop optimization 
further remove short-range 
entanglement inside a loop 
!

This work !



Algorithms of Loop-TNR
Part One: Entanglement filtering

Part Two: Optimizing tensors on a loop
Together: Complete remove short-range 
entanglement



Part One — Entanglement filtering
How 1. Find & insert projectors 2. Define new tensors

1 2 3 4 5 6 7 8

T1 T2 T3 T4

P1L

P4R

P4L

P3R

P3L

P2R

P2L

P1R

2

3
45

18
7

6

Aim Remove conner double line (CDL) tensors 
Generate local canonical gauge

Zheng-Cheng Gu and Xiao-Gang Wen, 
Phys. Rev. B 80, 155131 (2009).



Part Two — Optimizing tensors on a loop

LN-TNR

Loop-TNR

cost function



Part Two — Optimizing tensors on a loop

solve the linear equation



Example: classical Ising model

T = T Ising
u,l,d,r

T Ising
1,2,1,2 = e�4� , T Ising

2,1,2,1 = e�4� ,

T Ising
1,1,1,1 = e4� , T Ising

2,2,2,2 = e4� ,

others = 1.

local tensor

Z =

X

{�}

exp(�
X

hiji

�i�j)partition function

Calculate scaling dimensions

Zheng-Cheng Gu and Xiao-Gang Wen, 
Phys. Rev. B 80, 155131 (2009).

transfer matrix

eigenvalues of the transfer matrix c,�↵

Ising CFT

central charge
c = 1/2

scaling 
dimensions

I �

✏



Loop-TNR Results

L = 2

scaling dimensions does not change 
with scale ~ scale invariance 

!
a clear gap between high-level 
parts and low-level parts

scaling dimensions change with 
scale ~ cannot recover scale 
invariance 
high-index parts will destroy low-
index parts

LN-TNR Results

Comparison of results



(a) LN-TNR
�=16, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(b) Loop-TNR, �=16, L=2

10 20 30 40
0

1

2

3

4

(c) LN-TNR
�=32, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(d) Loop-TNR, �=32, L=2

10 20 30 40
0

1

2

3

4

(e) LN-TNR, �=16, L=4

5 10 15 20
0

1

2

3

4

5

6

Iteration step

c,
�
�e
ve
n ,
�
�o
dd

(f) Loop-TNR, �=16, L=4

10 20 30 40
0

1

2

3

4

5

6

Iteration step

remain accurate up to 40 
iteration steps

even longer for  
the proper RG flow last 
longer for larger

� = 16

� = 32

�

Stability



(a) LN-TNR
�=16, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(b) Loop-TNR, �=16, L=2

10 20 30 40
0

1

2

3

4

(c) LN-TNR
�=32, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(d) Loop-TNR, �=32, L=2

10 20 30 40
0

1

2

3

4

(e) LN-TNR, �=16, L=4

5 10 15 20
0

1

2

3

4

5

6

Iteration step

c,
�
�e
ve
n ,
�
�o
dd

(f) Loop-TNR, �=16, L=4

10 20 30 40
0

1

2

3

4

5

6

Iteration step

increasing     , more scaling 
dimensions can be resolved

�

Stability



(a) LN-TNR
�=16, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(b) Loop-TNR, �=16, L=2

10 20 30 40
0

1

2

3

4

(c) LN-TNR
�=32, L=2

5 10 15 20
0

1

2

3

4

c,
�
�e
ve
n ,
�
�o
dd

(d) Loop-TNR, �=32, L=2

10 20 30 40
0

1

2

3

4

(e) LN-TNR, �=16, L=4

5 10 15 20
0

1

2

3

4

5

6

Iteration step

c,
�
�e
ve
n ,
�
�o
dd

(f) Loop-TNR, �=16, L=4

10 20 30 40
0

1

2

3

4

5

6

Iteration step

effectively, 

effectively, 

� = 16

� = 162 = 256

much more scaling 
dimensions can be read off 
accuracy is higher

infinite      ~   infinite 
dimensional fixed point tensor 
described by Ising CFT

�

Stability



Accuracy



Universal CFT data

Perform the loop-TNR algorithm (Yang, Gu ,Wen 2017)



Remove the marginally irrelevant operator in XXX model



Anyon exchange symmetry and gapless nature of domain wall 

The domain wall model 
can be regarded as the 
boundary of a stacking 
system

subset: {1, e, eb, b} {1,m,mb, b}or



Conclusions and discussions 

Gapless domains of non-chiral topological phases are constructed 
systematically in 2D.  
!
 We use the state-of-art loop-TNR algorithm to test the Z2 example and a 
su(2)_1 WZW CFT is found even in the absence of global SU(2) symmetry. 
!
 CFT and geometric degrees of freedom naturally emerge on gapless 
domain walls. 
!
 Our constructions can be potentially generalized into higher dimensions. 

Thank you!


