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 Sketch of proofs/arguments
• Chiral TSC in class D: Fermion parity switch (arXiv 1705.04691) 

• IQHE of bosons/fermions:  Polarization (arXiv 1705.09298)

• QSHE and SPTs:  Entanglement spectrum (arXiv 1703.04776)



Concepts of Topological Insulators (TIs)

• Insulating (localized) bulk states

•Conducting (delocalized) 

edge/surface states

Bulk-boundary correspondence
Fig. from Hasan, Kane (2010)

Example 1: 
Integer quantum Hall effect (IQHE)

Chiral 
edge states



• Time reversal symmetry  Z2-valued topological index  (Kane, 

Mele 2005, Bernevig, Hughes, Zhang 2005,…) 

Example 2: Quantum spin Hall effect (QSHE)

Helical edge states: 
protected by time reversal symmetry

Fig. from Hasan, Kane (2010) Konig et al (2007)



Classification of non-interacting fermionic TIs

• Mathematical setup

Grassmann #’s

(i) H is quasi-diagonal

(locality)

(ii) H is gapped

E=0Spectrum 
gap

Schnyder, Ryu, Furusaki, Ludwig (2008)     Kitaev (2009)

Physical Symmetry



Generalization to interacting particles? 

• Interacting fermions?

• Interacting bosons/spins? 
(Typically they form Bose-Einstein condensate/Magnetic orders 

if non-interacting)

•Classification of interacting topological states w/ 
symmetry protected surface/edge states?



Symmetry Protected Topological (SPT) states

• Gapped local Hamiltonian

• Unique ground state on any closed manifold (No g.s. degeneracy)

• Symmetry protected surface/edge states on an open boundary

Chen, Gu, Liu, Wen (2012)

Group cohomology

Haldane (1983), Affleck, Kennedy, Lieb, Tasaki (1987)

Simplest example: d=1 Haldane phase in AKLT model 



Where to find interacting SPT states in d>1?

Higher than 1 dimension: hard to realize SPTs (other than 
unrealistic but exactly solvable models) 

•How to solve the g.s. wavefunction of an interacting 
system?

•How to compute topological invariant of SPTs from the 
many-body ground state? 

Interacting Non-interacting

Any magic trick
without computing the g.s.?

Lieb-Schultz-Mattis Theorems 
for interacting systems 



The Lieb-Schultz-Mattis (LSM) theorem

Simplest example: metals vs. insulators?

Half-filling: ½  electron per unit cell
Lattice translation symmetry

U(1) charge conservation symmetry

Impossible to have an insulator preserving translation sym.! 

No-go theorem, applicable to interacting bosons/fermions

Lieb, Schultz, Mattis (1961)  Oshikawa (2000) Hastings (2004)  Parameswaran et al (2013) 
Roy (2012) Watanabe et al (2015) Cheng et al (2016) Po et al (2017) Jian et al (2017)…



Ingredients of a LSM Theorem
Microscopic (Ultraviolet) input:

Hilbert space (e.g. filling) + Translation Sym. + Global Sym.

Microscopic (Infrared) Output: Ground State Properties

• Gapless Spectrum • Spontaneous 
Symmetry 
Breaking, e.g. 
Charge Density 
Wave

• Intrinsic 
topological 
orders in d>1, 
e.g. fractional 
QHE in d=2

A unique gapped ground state 

Powerful: apply to interacting bosons and/or fermions
in different spatial dimensions



Main results: a new class of 
LSM-type theorem for SPT phases in d=2

Microscopic (Ultraviolet) input:

Hilbert space + Magnetic Translation Sym. + Global Sym.

Microscopic (Infrared) Output: Ground State Properties

A unique gapped ground state
must be a SPT (invertible) phase!   



Magnetic Translation Symmetry

• Uniform magnetic field 

Magnetic translation symmetry = Translation + large gauge transformation

x

y

Zak (1964)

Magnetic translation algebra:



LSM theorem for fermionic SPT/invertible phases in d=2

Topological insulators

“LSM theorem for SPT phases”, YML, arXiv 1705.04691

Topological superconductors



Application 1: IQHE (class A) in Hofstadter models

Charge (filling) per unit cellFlux per unit cellHall conductance
in unit of 

Half-filling:                    ; π-flux:                   ==>

Non-interacting proof:   Dana, Avron, Seiler (1985)
Interacting proof:   YML, Ran, Oshikawa, arXiv 1705.09298



Example 1.1: half-filling + π-flux Hofstadter models

• π-flux per unit cell at half filling

(half electrons per site)

• Square/triangular/kagome lattices……

Common feature:

• Two Dirac cones with N.N. hoppings
• Only mass term preserving magnetic 

translation 

IQHE with Chern number ±1



Example 1.2: magnetic insulators

• “Quarter doping” on triangular/honeycomb/kagome lattices: 

Van-Hove singularity and perfect nesting  interaction-driven “chiral SDW”

Martin, Batista, PRL (2008) Tao Li, EPL (2012)T1

T2

Quarter filling for 
spin-1/2 electrons: 



Application 2: QSHE (class AII) in -flux models

• Input: fermions  + flux per u.c.

U(1)  charge conservation + Time reversal symmetry

•Output: Topological index                                               for any 
unique gapped ground state 

• A unique gapped g.s. must exhibit QSHE 

with odd fermions per unit cell !

Wu, Ho and YML, arXiv 1703.04776 (2017)
Figure from Qi et al (2009)



Example 2
𝜋-flux on square lattice with spin-orbit coupling 

t

(-t)

𝑖𝑡′𝑠𝑧

y

x
Energy spectrum with open boundary 
in x-direction and periodic in y.

Left edge mode

Right edge mode

Wu, Ho and YML, arXiv 1703.04776 (2017)



Application 3: Majorana vortex lattice (class D)

• Input: Majoranas + flux per u.c.

•Output: Topological index                                          for any 
unique gapped ground state 

•With odd Majoranas per unit cell , a unique 
gapped g.s. must be a chiral TSC with a
half-integer chiral central charge!

YML, arXiv 1705.04691

Figure from Qi et al (2009)



Example 3 Majorana vortex lattice of p+ip superconductor

YML, arXiv 1705.04691

Chiral Majorana edge mode 
with c_=1/2

Grosfeld, Stern (2006)



Application 4: Quantum spin liquids (class DIII)

• Input: Majorana Kramers pairs  + flux

per u.c.           + Time reversal symmetry

• Output: Topological index                                               for any 
unique gapped ground state 

• A unique gapped g.s. must be helical TSC 
with odd Majorana pairs per unit cell !

YML, arXiv 1705.04691
Figure from Qi et al (2009)



Example 4 Kitaev-type Z2 spin liquids on square lattice

YML, arXiv 1705.04691

Helical Majorana edge modes 
Toric code where TRS exchanges e and m
Nakai, Ryu, Furusaki (2012)



LSM theorem for bosonic SPT phases in d=2

“LSM theorem for SPT phases”, YML, arXiv 1705.04691

IQHE of interacting bosons

See also Yang, Jiang, Vishwanath, Ran; arXiv 1705.05421 

QSHE of interacting bosons



Application 5: IQHE of two-component bosons

Yin-Chen He et al (2015) YML, arXiv 1705.04691

Input:

Output:



Physical intuition: charge-flux binding in SPT phases

The “Old” LSM theorem:

Unique gapped g.s. 

QHE 

Our “New” LSM theorem:

Unique gapped g.s. 



Infinite cylinder (or torus)
periodic along T2 direction

Setup for the proof

Adiabatic
flux insertion

H(0)

H( L2)

Adiabatic evolution of 
a unique gapped g.s.

Effective sym. on g.s.



LSM for IQHE (Class A): polarization
Center of mass position of all charges

“Order parameter” for an (interacting) insulator
(King-Smith, Vanderbilt 1993, Resta, Sorella, 1999……)

YML, Ran, Oshikawa, arXiv 1705.09298

Adiabatic
flux insertion



LSM for chiral TSC (Class D): fermion parity

Translation T1 of odd Majoranas is a SUSY

(Hsieh, Halasz, Grover, 2016)

Twist boundary condition  switch fermion parity
Must be a chiral TSC of p+ip type; with an odd # 

of MZMs in each π-flux (Read, Green 2000)



LSM for QSHE/SPT: entanglement spectrum
TRS  -flux:

Wu, Ho and YML, arXiv 1703.04776 (2017)

𝐸𝑘

𝜖𝐹 𝑘



Generalization to SETs: FQHEs with U(1) sym. 

YML, Ran, Oshikawa, arXiv 1705.09298

“background anyon” a per unit cell

Ambiguity in def.



Concluding Remarks
• “Old” LSM theorem (w/ translation sym.): Impossible to have a 

unique gapped (SRE) ground state (No-go theorem)

• “New” LSM theorem (w/ magnetic translation sym.): 

If a unique gapped g.s. (SRE) must be a SPT (invertible) phase!

• Applies to interacting bosons/fermions in d=2 w/ various global 
symmetries

• Realistic models and numerics?

• Generalization to d>2?

• Generalization to space group sym.?

• Generalization to symmetry-enriched topological (SET) orders?
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