Rui-Zhen Huang (黄瑞珍)

Photo Rui Zhen Huang for update

 

 

 

 

View Dr. R. Z. Huang's CV

 

 

 

Education

2013-2018    Ph.D in theoretical physics,  IOP, CAS

2009-2013    B.S. in physics,   Lanzhou Univ.

 

 

 

Professional Experience

2018.07-Present   Postdoctoral Fellow, Kavli ITS, UCAS

 

 

 

Research Activity

  1. Tensor network states/Tensor renormalization group methods and their application to quantum many body problems
  2. Equilibrium and non-equilibrium properties of novel quantum magnetic phases and transitions between them
  3. Topological phases and critical behavior between these phases

 

 

Publications

  1. Emergent Symmetry and Conserved Current at a One Dimensional Incarnation of Deconfined Quantum Critical Point

    RZ Huang, DC Lu, YZ You, ZY Meng, T Xiang, Phys. Rev. B 100, 125137 (2019) (Editors' Suggestion)

  2. Nonequilibrium critical dynamics in the quantum chiral clock model

    RZ Huang, S Yin, Phys. Rev. B 99,184104(2019)

  3. Finite-temperature charge dynamics and the melting of the Mott insulator

    XJ Han, C Chen, J Chen, HD Xie, RZ Huang, HJ Liao, B Normand, ZY Meng, T Xiang, Phys. Rev. B 99, 245150(2019)

  4. Generalized Lanczos method for systematic optimization of tensor network states

    RZ Huang, HJ Liao, ZY Liu, HD Xie, ZY Xie, HH Zhao, J Chen, T Xiang, Chinese Physics B 27 (7), 070501(2018)

  5. Reorthonormalization of Chebyshev matrix product states for dynamical correlation functions.

    HD Xie, RZ Huang, XJ Han, X Yan, HH Zhao, ZY Xie, HJ Liao and T Xiang, Phys. Rev. B 97.07 5111 (2018).

  6. Analytic continuation with Padé decomposition

    XJ Han, HJ Liao, HD Xie, RZ Huang, ZY Meng and T Xiang, Chin.Phys. Lett. 34 077102(2017).

  7. Optimized contraction scheme for tensor-network states

    ZY Xie, HJ Liao, RZ Huang, HD Xie, J Chen, ZY Liu and T Xiang. Phys. Rev.B 96, 045128 (2017).

  8. Phase transition of the q-state clock model: duality and tensor Renormalization

    J Chen, HJ Liao, HD Xie, XJ Han, RZ Huang, S Cheng, ZC Wei, ZY Xie and T Xiang. Chin. Phys. Lett. 34 050503(2017).

  9. Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet

    HJ Liao, ZY Xie, J Chen, ZY Liu, HD Xie, RZ Huang, B Normand and T Xiang. Phys. Rev. Lett. 118, 137202 (2017) (Editors' Suggestion) (Featured in Physics)

 

 

 

Ribbon ucas2

Yi Zhang (张燚)

Photo Yi Zhang 1

 

 

 

Position

Postdoctoral Fellow

 

 

 

Education

2004–2008 B.S., University of Science and Technology of China (USTC), Hefei, China.

2008–2014 Ph.D., Boston College, Boston, USA

 

 

 

Professional Experience

2019.7        Postdoctoral Fellow, Kavli ITS, UCAS

2014–2019 Postdoctoral Associate, Louisiana State University, Baton Rouge

 

 

 

Research Interest

Localization effects in disordered systems including the interplay between disorder and interaction

Majorana modes on the topological superconductors

Strongly correlated electron systems especially high temperature superconductivity and other unconventional superconductivity

 

 

Publications

[1] Hanna Terletska, Yi Zhang, Ka-Ming Tam, Tom Berlijn, Liviu Chioncel, N. S. Vidhyadhiraja, and Mark Jarrell. Systematic quantum cluster typical medium method for the study of localization in strongly disordered electronic systems. Applied Sciences, 8(12), 2018.

[2] Yi Zhang, R. Nelson, K.-M. Tam, W. Ku, U. Yu, N. S. Vidhyadhiraja, H. Terletska, J. Moreno, M. Jarrell, and T. Berlijn. Origin of localization in ti-doped si. Phys. Rev. B 98, 174204, Nov 2018.

[3] Y. Zhang, Y. F. Zhang, S. X. Yang, K.-M. Tam, N. S. Vidhyadhiraja, and M. Jarrell. Calculation of two-particle quantities in the typical medium dynamical cluster approximation. Phys. Rev. B 95, 144208, Apr 2017.

[4] H. Terletska, Y. Zhang, L. Chioncel, D. Vollhardt, and M. Jarrell. Typical-medium
multiple-scattering theory for disordered systems with anderson localization. Phys.
Rev. B 95, 134204, Apr 2017.

[5] Yi Zhang, R. Nelson, Elisha Siddiqui, K.-M. Tam, U. Yu, T. Berlijn, W. Ku, N. S. Vidhyadhiraja, J. Moreno, and M. Jarrell. Generalized multiband typical medium dynamical cluster approximation: Application to (ga,mn)n. Phys. Rev. B 94, 224208, Dec 2016.

[6] Yi Zhang, Hanna Terletska, C. Moore, Chinedu Ekuma, Ka-Ming Tam, Tom Berlijn, Wei Ku, Juana Moreno, and Mark Jarrell. Study of multiband disordered systems using the typical medium dynamical cluster approximation. Phys. Rev. B 92, 205111, Nov 2015.

[7] Kun Jiang, Yi Zhang, Sen Zhou, and Ziqiang Wang. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half filling. Phys. Rev. Lett. 114, 216402, May 2015.

[8] Yi Zhang, Paulo Farinas, and Kevin Bedell. The "higgs" amplitude mode in weak ferromagnetic metals. Acta Physica Polonica A, 127:153, June 2013. 

[9] Yi Zhang and Kevin S. Bedell. Spin orbit magnetism and unconventional superconductivity. Phys. Rev. B 87, 115134, Mar 2013. 

[10] Yang Wang, Tianyi Sun, Trilochan Paudel, Yi Zhang, Zhifeng Ren, and Krzysztof Kempa. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Letters, 12(1): 440–445, 2012. PMID: 22185407.

 

 

 

 

Ribbon ucas2

Yuya Ominato (大凑 友也)

Photo Ominato Yuya white

 

 

 

Position

Postdoctoral Fellow (2019-2021)

View Dr. Y. Ominato's CV

 

 

Education

Mar. 2011, B.S., Physics, Tohoku University
Mar. 2013, M.S., Physics, Tohoku University
Mar. 2016, Ph.D. Physics, Tohoku University

 

 

Professional Experience

Apr. 2016-Mar. 2019, Postdoctoral Researcher, IMR, Tohoku University

Apr. 2019-present, Postdoctoral Fellow, Kavli ITS, UCAS

 

 

Research Activities

Spin quantum transport

 

 

Publication

(Refereed Journal)

[1] Y. Ominato and M. Koshino, Orbital magnetic susceptibility of finite-sized graphene, Physical Review B 85, 165454 (2012)

[2] Y. Ominato and M. Koshino, Orbital magnetism of grapheme flakes, Physical Review B 87, 115433 (2013)

[3] Y. Ominato and M. Koshino, Orbital magnetism of grapheme nanostructures, Solid State Communications 175-176, 51 (2013)

[4] Y. Ominato and M. Koshino, Quantum transport in three-dimensional Weyl electron system, Physical Review B 89, 054202 (2014)

[5] Y. Ominato and M. Koshino, Quantum transport in three-dimensional Weyl electron system in the presence of charged impurity scattering, Physical Review B 91, 035202 (2015)

[6] Y. Ominato and M. Koshino, Magnetotransport in Weyl semimetals in the quantum limit: Role of topological surface states, Physical Review B 93, 245304 (2016)

[7] Y. Ominato, K. Kobayashi, and K. Nomura, Anisotropic magnetotransport in Dirac-Weylmagnetic junctions, Physical Review B 95, 085308 (2017)

[8] K. Kobayashi, Y. Ominato, and K. Nomura, Helicity-protected domain-wall magnetoresistance in ferromagnetic Weyl semimetal, J. Phys. Soc. Jpn. 87, 073707 (2018)

[9] Y. Ominato and K. Nomura, Spin susceptibility of three-dimensional Dirac semimetals, Physical Review B 97, 245207 (2018)

[10] Y. Ominato, A. Yamakage, and K. Nomura, Electric Polarization in Magnetic Topological Nodal Semimetal Thin Films, Condens. Matter 2018, 3(4), 43

 

 

 

 

Ribbon ucas2

Junji Fujimoto (藤本 纯治)

2.photo Fujimoto Junji

 

 

 

Position

Postdoctoral Fellow (2019-2021)

View Dr. J. Fujimoto's CV

 

 

 

Education

2012 - 2015 Doctor of Science

2010 - 2012 Master of Engineering

 

 

 

Professional Experience

2017 - 2019 Visiting researcher, Center for Emergent Matter Science, RIKEN

2015 - 2019 Postdoctoral fellow, Institute for Chemical Research, Kyoto University

2013 - 2015 JSPS Research Fellowship for Young Scientists (DC2)

 

 

 

Research Activities

spintronics

field theoretical approach

 

 

 

Publications

  1. Valley-dependent spin transport in monolayer transition-metal dichalcogenides”,
    Yuya Ominato, Junji Fujimoto, and Mamoru Matsuo, accepted in Phys. Rev. Lett.
  2. Alternating current-induced interfacial spin-transfer torque”,
    Junji Fujimoto, and Mamoru Matsuo, Phys. Rev. B 100, 220402(R) (2019).
  3. Nonlocal spin-charge conversion via Rashba spin-orbit interaction”,
    Junji Fujimoto, and Gen Tatara, Phys. Rev. B 99, 054407 (2019).
  4. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections”,
    Junji Fujimoto, Phys. Rev. B 97, 104421 (2018).
  5. Intrinsic and Extrinsic Spin Hall Effects of Dirac Electrons”,
    Takaaki Fukazawa, Hiroshi Kohno, and Junji Fujimoto, J. Phys. Soc. Jpn. 86, 094704 (2017).
  6. Strong Bias Effect on Voltage-Driven Torque at Epitaxial Fe-MgO Interface”,
    Shinji Miwa, Junji Fujimoto, Philipp Risius, Kohei Nawaoka, Minori Goto, and Yoshishige Suzuki, Phys. Rev. X 7, 031018 (2017).
  7. Transport properties of Dirac ferromagnet”,
    Junji Fujimoto and Hiroshi Kohno, Phys. Rev. B 90, 214418 (2014).
  8. Ultraviolet divergence and Ward-Takahashi identity in a two-dimensional Dirac electron system with short-range impurities”,
    Junji Fujimoto, Akio Sakai, and Hiroshi Kohno, Phys. Rev. B 87, 085437 (2013).
  9. Dirac Liquid Theory: 2nd Order Perturbation Approach”,
    Junji Fujimoto, Yuki Fuseya, and Kazumasa Miyake, J. Phys. Soc. Jpn. Suppl. 81, SB042 (2012).

 

 

 

 

Ribbon ucas2

Yu Li (李宇)

YuLi

 

 

 

 

Position

        Postdoctoral Fellow

 

 

Education

        2008-2012, B.S.. Donghua University, Shanghai, China

        2012-2018, Ph. D., Institute of Physics, Chinese Academy of Sciences, Beijing, China

 

 

Professional Experience

05/2019-08/2019: Research Assistant, South University of Science and Technology, Shenzhen, China

09/2019-NOW: Postdoctoral Fellow, Kavli ITS, UCAS, Beijing, China

 

 

Research Interest

        Pairing symmetry and pairing mechanism in unconventional superconductivity

        Novel phenomena in strongly correlated systems (such as heavy fermions)

        Topological superconductivity

 

 

 

Publications

[1] Yu Li, Zhiqiang Wang, and Wen Huang, Anomalous Hall effect in chiral superconductors from impurity superlattices, arXiv:1909.08012 (2019).

[2] Yu Li, and Wen Huang, Possible ‘symmetry-imposed’ near-nodal two-dimensional p-wave pairing in Sr2RuO4, arXiv:1909.03141 (2019).

[3] Yu Li, Qianqian Wang, Yuanji Xu, Wenhui Xie, and Yi-feng Yang, Nearly-degenerate px+ipy and dx2-y2 pairing symmetry in the heavy fermion superconductor YbRh2Si2, Phys. Rev. B 100, 085132 (2019).

[4] Zhe Liu, Yu Li, and Yi-feng Yang, Possible nodeless s±-wave superconductivity in twisted bilayer graphene, Chin. Phys. B 28, 077103 (2019).

[5] Yu Li, Min Liu, Zhaoming Fu, Xiangrong Chen, Fan Yang, and Yi-feng Yang, Gap symmetry of heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120, 217001 (2018).

[6] Yu Li and Yi-feng Yang, A phenomenological theory of heavy fermion superconductivity in CeCoIn5, Chin. Sci. Bull. 62, 4068 (2017).

[7] Yi-feng Yang and Yu Li, Heavy-fermion superconductivity and competing orders, Acta Physica Sinica 64, 217401 (2015).

[8] Yi-feng Yang, Neng Xie, and Yu Li, Two-fluid theory for heavy fermion materials, Progress in Physics 35, 191 (2015).