Rui-Zhen Huang (黄瑞珍)

Photo Rui Zhen Huang for update

 

 

 

 

View Dr. R. Z. Huang's CV

 

 

 

Education

2013-2018    Ph.D in theoretical physics,  IOP, CAS

2009-2013    B.S. in physics,   Lanzhou Univ.

 

 

 

Professional Experience

2018.7-2021.12   Postdoctoral Fellow, Kavli ITS, UCAS

 

 

 

Research Activity

  1. Tensor network states/Tensor renormalization group methods and their application to quantum many body problems
  2. Equilibrium and non-equilibrium properties of novel quantum magnetic phases and transitions between them
  3. Topological phases and critical behavior between these phases

 

 

Publications

  1. Emergent Symmetry and Conserved Current at a One Dimensional Incarnation of Deconfined Quantum Critical Point

    RZ Huang, DC Lu, YZ You, ZY Meng, T Xiang, Phys. Rev. B 100, 125137 (2019) (Editors' Suggestion)

  2. Nonequilibrium critical dynamics in the quantum chiral clock model

    RZ Huang, S Yin, Phys. Rev. B 99,184104(2019)

  3. Finite-temperature charge dynamics and the melting of the Mott insulator

    XJ Han, C Chen, J Chen, HD Xie, RZ Huang, HJ Liao, B Normand, ZY Meng, T Xiang, Phys. Rev. B 99, 245150(2019)

  4. Generalized Lanczos method for systematic optimization of tensor network states

    RZ Huang, HJ Liao, ZY Liu, HD Xie, ZY Xie, HH Zhao, J Chen, T Xiang, Chinese Physics B 27 (7), 070501(2018)

  5. Reorthonormalization of Chebyshev matrix product states for dynamical correlation functions.

    HD Xie, RZ Huang, XJ Han, X Yan, HH Zhao, ZY Xie, HJ Liao and T Xiang, Phys. Rev. B 97.07 5111 (2018).

  6. Analytic continuation with Padé decomposition

    XJ Han, HJ Liao, HD Xie, RZ Huang, ZY Meng and T Xiang, Chin.Phys. Lett. 34 077102(2017).

  7. Optimized contraction scheme for tensor-network states

    ZY Xie, HJ Liao, RZ Huang, HD Xie, J Chen, ZY Liu and T Xiang. Phys. Rev.B 96, 045128 (2017).

  8. Phase transition of the q-state clock model: duality and tensor Renormalization

    J Chen, HJ Liao, HD Xie, XJ Han, RZ Huang, S Cheng, ZC Wei, ZY Xie and T Xiang. Chin. Phys. Lett. 34 050503(2017).

  9. Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet

    HJ Liao, ZY Xie, J Chen, ZY Liu, HD Xie, RZ Huang, B Normand and T Xiang. Phys. Rev. Lett. 118, 137202 (2017) (Editors' Suggestion) (Featured in Physics)

 

 

 

Ribbon ucas2

Yi Zhang (张燚)

Photo Yi Zhang 1

 

 

 

Position

Postdoctoral Fellow

 

 

 

Education

2004–2008 B.S., University of Science and Technology of China (USTC), Hefei, China.

2008–2014 Ph.D., Boston College, Boston, USA

 

 

 

Professional Experience

2019-2021   Postdoctoral Fellow, Kavli ITS, UCAS

2014-2019   Postdoctoral Associate, Louisiana State University, Baton Rouge

 

 

 

Research Interest

Localization effects in disordered systems including the interplay between disorder and interaction

Majorana modes on the topological superconductors

Strongly correlated electron systems especially high temperature superconductivity and other unconventional superconductivity

 

 

Publications

[1] Hanna Terletska, Yi Zhang, Ka-Ming Tam, Tom Berlijn, Liviu Chioncel, N. S. Vidhyadhiraja, and Mark Jarrell. Systematic quantum cluster typical medium method for the study of localization in strongly disordered electronic systems. Applied Sciences, 8(12), 2018.

[2] Yi Zhang, R. Nelson, K.-M. Tam, W. Ku, U. Yu, N. S. Vidhyadhiraja, H. Terletska, J. Moreno, M. Jarrell, and T. Berlijn. Origin of localization in ti-doped si. Phys. Rev. B 98, 174204, Nov 2018.

[3] Y. Zhang, Y. F. Zhang, S. X. Yang, K.-M. Tam, N. S. Vidhyadhiraja, and M. Jarrell. Calculation of two-particle quantities in the typical medium dynamical cluster approximation. Phys. Rev. B 95, 144208, Apr 2017.

[4] H. Terletska, Y. Zhang, L. Chioncel, D. Vollhardt, and M. Jarrell. Typical-medium
multiple-scattering theory for disordered systems with anderson localization. Phys.
Rev. B 95, 134204, Apr 2017.

[5] Yi Zhang, R. Nelson, Elisha Siddiqui, K.-M. Tam, U. Yu, T. Berlijn, W. Ku, N. S. Vidhyadhiraja, J. Moreno, and M. Jarrell. Generalized multiband typical medium dynamical cluster approximation: Application to (ga,mn)n. Phys. Rev. B 94, 224208, Dec 2016.

[6] Yi Zhang, Hanna Terletska, C. Moore, Chinedu Ekuma, Ka-Ming Tam, Tom Berlijn, Wei Ku, Juana Moreno, and Mark Jarrell. Study of multiband disordered systems using the typical medium dynamical cluster approximation. Phys. Rev. B 92, 205111, Nov 2015.

[7] Kun Jiang, Yi Zhang, Sen Zhou, and Ziqiang Wang. Chiral spin density wave order on the frustrated honeycomb and bilayer triangle lattice hubbard model at half filling. Phys. Rev. Lett. 114, 216402, May 2015.

[8] Yi Zhang, Paulo Farinas, and Kevin Bedell. The "higgs" amplitude mode in weak ferromagnetic metals. Acta Physica Polonica A, 127:153, June 2013. 

[9] Yi Zhang and Kevin S. Bedell. Spin orbit magnetism and unconventional superconductivity. Phys. Rev. B 87, 115134, Mar 2013. 

[10] Yang Wang, Tianyi Sun, Trilochan Paudel, Yi Zhang, Zhifeng Ren, and Krzysztof Kempa. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Letters, 12(1): 440–445, 2012. PMID: 22185407.

 

 

 

 

Ribbon ucas2

Ching-Kai Chiu (邱靖凯)

 

Ching Kai Chiu2

 

Position 

Postdoctor (2018 - 2020) 

 

 

Education

2007-2013 Ph. D. in Physics

University of Illinois at Urbana-Champaign

 

2002-2006, B. S. in Physics & Mathematics

National Taiwan University

 

 

Experiences

2018-2020  Postdoctoral Researcher

Kavli ITS, UCAS

2015-2018  Postdoctoral Researcher

University of Maryland

2013-2015  Postdoctoral Fellowship

University of British Columbia

 

 

Publications

1. *Classi cation of topological insulators and superconductors in the presence of re ection symmetry, Ching-Kai Chiu, Hong Yao, and Shinsei Ryu, Phys. Rev. B, 88, 075142 (2013) 

2. *Classi cation of re ection symmetry protected topological semimetals and nodal superconductors, Ching-Kai Chiu and Andreas P. Schnyder, Phys. Rev. B, 90, 205136 (2014) 

3. *Topological nodal-line fermions in the non-centrosymmetric superconductor
compound PbTaSe2, Guang Bian, Tay-Rong Chang, Raman Sankar, Su-Yang Xu, Hao Zheng, Titus Neupert, Ching-Kai Chiu, Shin-Ming Huang, Guoqing Chang, Ilya Belopolski, Daniel S.Sanchez, Madhab Neupane, Nasser Alidoust, Chang Liu, BaoKai Wang, Chi-Cheng Lee, Horng-Tay Jeng, Arun Bansil, Fang- cheng Chou, Hsin Lin, M. Zahid Hasan, Nat. Commun. 7, 10556 (2016) 

4. *Topological semi-metals with line nodes and drumhead surface states, Y.-H. Chan, Ching-Kai Chiu, M. Y. Chou, Andreas P. Schnyder, Phys. Rev. B 93, 205132 (2016) (Editors' Suggestion)

5. * Classi cation of topological quantum matter with symmetries, Ching-Kai Chiu, Andreas P. Schnyder, Je rey C. T. Teo and Shinsei Ryu, Rev. Mod. Phys. 88, 035005 (2016)

6. Symmetries, Dimensions, and Topological Insulators: the Mechanism Behind the Face of the Bott clock, Michael Stone, Ching-Kai Chiu, and Abhishek Roy, J. Phys. A: Math. Theor. 44 045001(2011).

7. Vortex Lines in Topological-Insulator Heterostructures, Ching-Kai Chiu, Taylor L. Hughes, and Matthew J. Gilbert, Phys. Rev. B 84, 144507 (2011).

8. Stabilization of Majorana Modes in Vortices in the Superconducting Phase of
Topological Insulators Using Topologically Trivial Bands, Ching-Kai Chiu, Pou-yan Ghaemi, and Taylor L. Hughes, Phys. Rev. Lett., 104, 237009 (2012)

9. Tuning between singlet, triplet, and mixed pairing states in an extended Hubbard chain, Kuei Sun, Ching-Kai Chiu, Hsiang-Hsuan Hung, and Jiansheng Wu, Phys. Rev. B, 89, 104519 (2014)

10. Majorana fermion exchange in strictly one dimensional structures, Ching-Kai Chiu, M.M. Vazifeh, and M. Franz, EPL 110 (2015) 10001 (Editor's Choice) 

11. Strongly interacting Majorana fermions, Ching-Kai Chiu, D. I. Pikulin and M. Franz, Phys. Rev. B 91, 165402 (2015)

12. Classi cation of crystalline topological semimetals with an application to Na3Bi, Ching-Kai Chiu and Andreas P. Schnyder, Proceedings of the International Workshop on Dirac Electrons in Solids 2015

13. Multiple signatures of topological transitions for interacting fermions in chain lattices, Y.-H. Chan, Ching-Kai Chiu, and Kuei Sun, Phys. Rev. B 92, 104514 (2015)

14. Interaction-enabled topological phases in topological insulator-superconductor het-erostructures, D. I. Pikulin, Ching-Kai Chiu, Xiaoyu Zhu, M. Franz, Phys. Rev. B 92, 075438 (2015)

15. Practical new platform for interaction-enabled topological phases, Ching-Kai Chiu, D, I. Pikulin and M. Franz, Phys. Rev. B 92, 241115(R) (2015)

16. Drumhead Surface States and Topological Nodal-Line Fermions in TlTaSe2, Guang Bian, Tay-Rong Chang, Hao Zheng, Saavanth Velury, Su-Yang Xu, Titus Neupert, Ching-Kai Chiu, Daniel S. Sanchez, Ilya Belopolski, Nasser Alidoust, Peng-Jen Chen, Guoqing Chang, Arun Bansil, Horng-Tay Jeng, Hsin Lin, M. Zahid Hasan, Phys. Rev. B 93, 121113(R) (2016)

17. Induced spectral gap and pairing correlations from superconducting proximity e ect, Ching-Kai Chiu, William S. Cole, and S. S. Das Sarma, Phys. Rev. B 94, 125304 (2016)

18. Type-II Dirac surface states in topological crystalline insulators, Ching-Kai Chiu, Y.-H. Chan, Xiao Li, Y. Nohara, and A. P. Schnyder, Phys. Rev. B 95, 035151 (2017) (Editors' Suggestion

19. Engineering of many-body Majorana states in a topological insulator/s-wave su-perconductor heterostructure, Hsiang-Hsuan Hung, Jiangsheng Wu, Kuei Sun, and Ching-Kai Chiu, Sci. Rep. 7, 3499 (2017) 

20. Conductance of a superconducting Coulomb blockaded Majorana nanowire, Ching-Kai Chiu, Jay D. Sau, S. Das Sarma, Phys. Rev. B 96, 054504 (2017)

21. Conductance interference in a superconducting Coulomb blockaded Majorana
ring, Ching-Kai Chiu, Jay D. Sau, S. Das Sarma, Phys. Rev. B 97, 035310

Preprints

1. Nontrivial surface topological physics from strong and weak topological insulators and superconductors, Ching-Kai Chiu, arXiv:1410.1117

2. Chiral Majorana Fermion Modes on the Surface of Superconducting Topological Insulators, Ching-Kai Chiu, Guang Bian, Hao Zheng, Jiaxin Yin, Songtian S. Zhang, Su-Yang Xu, and M. Zahid Hasan, arXiv:1612.09276 (submit to EPL)

3. Helical Majorana edge mode in a superconducting antiferromagnetic quantum spin Hall insulator, Yingyi Huang and Ching-Kai Chiu, arXiv:1708.05724 (sub- mit to PRL)

4. Topological band crossings in hexagonal materials, Jonathan Zhang, Y.-H. Chan, Ching-Kai Chiu, Maia G. Vergniory, Leslie M. Schoop, Andreas P. Schnyder, arXiv:1805.05120 (accepted by PR Materials)

5. Fractional Josephson E ect with and without Majorana Zero Modes, Ching-Kai Chiu, S. Das Sarma, arXiv:1806.02224 (submit to PRB)

 

 

Contact

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

 

 

Ribbon ucas2

 

 

Junji Fujimoto (藤本 纯治)

2.photo Fujimoto Junji

 

 

 

Position

Postdoctoral Fellow (2019-2021)

View Dr. J. Fujimoto's CV

 

 

 

Education

2012 - 2015 Doctor of Science

2010 - 2012 Master of Engineering

 

 

 

Professional Experience

2017 - 2019 Visiting researcher, Center for Emergent Matter Science, RIKEN

2015 - 2019 Postdoctoral fellow, Institute for Chemical Research, Kyoto University

2013 - 2015 JSPS Research Fellowship for Young Scientists (DC2)

 

 

 

Research Activities

spintronics

field theoretical approach

 

 

 

Publications

  1. Valley-dependent spin transport in monolayer transition-metal dichalcogenides”,
    Yuya Ominato, Junji Fujimoto, and Mamoru Matsuo, accepted in Phys. Rev. Lett.
  2. Alternating current-induced interfacial spin-transfer torque”,
    Junji Fujimoto, and Mamoru Matsuo, Phys. Rev. B 100, 220402(R) (2019).
  3. Nonlocal spin-charge conversion via Rashba spin-orbit interaction”,
    Junji Fujimoto, and Gen Tatara, Phys. Rev. B 99, 054407 (2019).
  4. Transport coefficients of Dirac ferromagnet: Effects of vertex corrections”,
    Junji Fujimoto, Phys. Rev. B 97, 104421 (2018).
  5. Intrinsic and Extrinsic Spin Hall Effects of Dirac Electrons”,
    Takaaki Fukazawa, Hiroshi Kohno, and Junji Fujimoto, J. Phys. Soc. Jpn. 86, 094704 (2017).
  6. Strong Bias Effect on Voltage-Driven Torque at Epitaxial Fe-MgO Interface”,
    Shinji Miwa, Junji Fujimoto, Philipp Risius, Kohei Nawaoka, Minori Goto, and Yoshishige Suzuki, Phys. Rev. X 7, 031018 (2017).
  7. Transport properties of Dirac ferromagnet”,
    Junji Fujimoto and Hiroshi Kohno, Phys. Rev. B 90, 214418 (2014).
  8. Ultraviolet divergence and Ward-Takahashi identity in a two-dimensional Dirac electron system with short-range impurities”,
    Junji Fujimoto, Akio Sakai, and Hiroshi Kohno, Phys. Rev. B 87, 085437 (2013).
  9. Dirac Liquid Theory: 2nd Order Perturbation Approach”,
    Junji Fujimoto, Yuki Fuseya, and Kazumasa Miyake, J. Phys. Soc. Jpn. Suppl. 81, SB042 (2012).

 

 

 

 

Ribbon ucas2

Yuichi Ohnuma (大沼 悠一)

 

 

Position

Postdoctoral Fellow (2018 - 2019)

View Dr. Y. Ohnuma's Personal CV

 

 

Education

Ph.D (2011 - 2016)

Ph.D. in Physics, Tohoku University, Japan

B. S. (2007 - 2011)

B. S. in Physics, Tohoku University, Japan

 

 

Professional Experience

Postdoctoral Fellow, Advanced Science Research Center, Japan Atomic Energy Agency, 2016.04–2018.03

Postdoctoral Fellow, Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, 2018.04–2019.03

 

 

Research Activities

  • Spin Seebeck and spin Peltier effects
  • Spin pumping and modulation of FMR linewidth
  • Spin current noise
  • Spin Hall effect
  • Spin transport with spin vorticity coupling

 

 

Publications

M. Mamoru, Y. Ohnuma, T. Kato, and S. Maekawa

“Spin Current Noise of the Spin Seebeck Effect and Spin Pumping”

Physical Review Letters 120, 037201 (2018).

 

Y. Ohnuma, M. Mamoru, and S. Maekawa

“Theory of the spin Peltier effect”

Physical Review B 96, 134412 (2017).

 

M. Mamoru, Y. Ohnuma, and S. Maekawa

“Theory of spin hydrodynamic generation”

Physical Review B 96, 020401(R) (2017).

 

Y. Ohnuma, M. Mamoru, and S. Maekawa

“Spin transport in half-metallic ferromagnets”

Physical Review B 94, 184405 (2016).

 

S. Geprägs, A. Kehlberger, F. D. Coletta, Z. Qiu, E.-J. Guo, T. Schulz, C. Mix, S. Meyer, A. Kamra, M. Althammer, H. Huebl, G. Jakob, Y. Ohnuma, H. Adachi, J. Barker, S. Maekawa, G. E. W. Bauer, E. Saitoh, R. Gross, S. T. B. Goennenwein, and M. Kläui

“Origin of the spin Seebeck effect in compensated ferrimagnets”

Nature Communications 7, 10452 (2016).

 

Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa

“Magnon instability driven by heat current in magnetic bilayers”

Physical Review B 92, 224404 (2015).

 

Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa

“Enhanced dc spin pumping into a fluctuating ferromagnet near Tc”

Physical Review B 89, 174417 (2014).

 

Y. Ohnuma, H. Adachi, E. Saitoh, and S. Maekawa

“Spin Seebeck effect in antiferromagnets and compensated ferrimagnets”

Physical Review B 87, 014423 (2013).

 

 

Contact

Email: This email address is being protected from spambots. You need JavaScript enabled to view it.; This email address is being protected from spambots. You need JavaScript enabled to view it.

Office: Rm. 407, Building A, Institute of Physics, CAS, Haidian Dist., Beijing

 

 

 

Ribbon ucas2